首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Glasses were made by melt-quench method in the system [(Sr1?x Pb x )O·TiO2]-[2SiO2·B2O3]-5[K2O-BaO] (0·0 ≤ x ≤ 0·4) with addition of 1 mol% Nb2O5. Perovskite strontium lead titanate in solid solution phase has been crystallized in borosilicate glassy matrix with suitable choice of composition and heat treatment schedule. Addition of 1 mol% of Nb2O5 enhances the crystallization of lead strontium titanate phase in the glassy matrix. Scanning electron microscopy (SEM) is performed to study the surface morphology of the crystallites and crystalline interface to the glass. Dielectric properties of these glass ceramics were studied by measuring capacitance and dissipation factor as a function of temperature at a few selected frequencies. Nb2O5 doped strontium lead titanate glass ceramic shows a high value of dielectric constant. It is of the order of 10,000 while the dielectric constant of undoped glass ceramic sample is of the order of 500. Complex impedance and modulus spectroscopic techniques were used to find out the contributions of polarization of crystallites and glass crystal interfaces to the resulting dielectric behaviour.  相似文献   

2.
Glass of the nominal composition 64 wt%(SrO·TiO2)·35 wt%(2SiO2·B2O3)-1 wt%(CoO) was prepared. The glass samples were subjected to heat treatment at 900 and 950 C. The phase progression in these glass ceramics from X-ray diffraction studies shows the formation of Sr2B2O5 as primary crystalline phase followed by rutile (TiO2), Sr3Ti2O7, SrB2Si2O8 and Sr3B2SiO8 as secondary phases. The first DTA exothermic peak of glass corresponds to the crystallization of Sr2B2O5, rutile and Sr3Ti2O7 phase while second crystallization peak may be assigned to the formation of SrB2Si2O8 and Sr3B2SiO8 phases. From microstructure studies we find that strontium borate grows with larger grain size whereas the other phases like Sr3Ti2O7, TiO2 appear smaller in size. Cobalt oxide content in the strontium titanate borosilicate glass ceramic gives the thermal stability to dielectric behaviour and decreases the dielectric loss. Paper presented at the poster session of MRSI AGM VI, Kharagpur, 1995  相似文献   

3.
Dielectric properties of glass ceramic samples prepared in the system [(Pb1-xSrx)O.TiO2)]- [2SiO2.B2O3]-[K2O]-[BaO] have been studied. Dielectric constant vs temperature plots of lead rich glass ceramics samples show a peak similar to Curie peak in case of ceramic lead strontium titanate. The Curie temperature of tetragonal crystalline phase of various glass ceramics has been found to decrease with Pb/Sr ratio in the initial glass. This complements X-ray diffraction (XRD) studies carried out previously to establish that the crystallites in various glass ceramic samples are (Pb1−xSrx)TiO3 solid solutions.  相似文献   

4.
The barium strontium titanate (BaxSr1–xTiO3) glass–ceramics doped with different content of La were prepared via controlled crystallization. Phase compositions, microstructure and dielectric behaviors were investigated systematically. The results revealed that La2O3 additives had little influence on the dielectric constant but significantly changed the microstructure of the glass–ceramics, which led to improved breakdown strength (BDS). The optimized energy-storage density of 3.18 J/cm3 was achieved in the glass–ceramics with 1.0 wt% La2O3 content which is 2.56 times higher than pure BST glass–ceramics, suggesting glass–ceramics of this composition could be an attractive candidate for energy-storage applications.  相似文献   

5.
The sintering of barium strontium titanate glass–ceramics in nitrogen modified their dielectric properties significantly compared to the sintering in air. The experimental results demonstrate that the glass–ceramics sintered at low temperatures contain a major phase Ba2TiSi2O8 (BTS), known as fresnoite. The fresnoite phase disappeared and the barium strontium titanate perovskite phase became the major phase when the sintering temperature was increased. In addition, the microstructure observation showed that both the proportion of crystal phase and the crystal size increase obviously with the increase of sintering temperature. Most importantly, impedance spectroscopy has been employed to study the electrical responses arising from the glass and the crystal phases in the glass–ceramics sintered at low temperatures and high temperatures. The magnitudes of impedance and modulus changed significantly for the glass–ceramics sintered at the two temperature ranges. The activation energy calculated from the complex impedance, complex modulus and dc conductivity suggests that the dielectric relaxation for the glass phase and the glass–crystal interface may be attributed to the motion of the dipole associated with oxygen vacancy. And for the barium strontium titanate perovskite glass–ceramics, the motion of the electrons from the second ionization of oxygen vacancies leads to dc electrical conduction. The mechanism for the giant dielectric properties of the glass–ceramics sintered at high temperatures in nitrogen is discussed.  相似文献   

6.
The crystallization behaviour of glasses in the system [(Pb Sr ) O·TiO2]-[2SiO2· B2O3]-[K2O]-[BaO] (0.2 ≤ x ≤ 0.9) have been studied. Perovskite titanate was found to be the major phase in all the glass ceramic samples investigated. The actual composition of crystalline phases could not be confirmed on the basis of shift in the X-ray diffraction (XRD) peak positions because of similar effects due to solid solution formation and strain due to crystal clamping. Comparison of the observed intensities of various XRD peaks of the perovskite titanate phase with the calculated intensities for (Pb Sr )TiO3 with same lead/strontium ratio confirmed the formation of lead strontium titanate solid solution. Microstructural characteristics of various glass ceramics are also discussed. The advantages of using K2O and BaO as additives instead of only K2O are also discussed.  相似文献   

7.
In this work, by an aqueous suspension milling process, boric acid (H3BO3), calcium hydroxide [Ca(OH)2], strontium carbonate (SrCO3) and barium hydroxide octahydrate [Ba (OH)2·8H2O] are mixed with strontium carbonate (SrCO3) and kaolin (Al2O3·2SiO2·2H2O) to prepare SrAl2Si2O8 ceramics with a sintering temperature of 950 °C. According to chemical compositions of flux agents B2O3, CaO·2B2O3, SrO·2B2O3 and BaO·2B2O3, raw materials boric acid, calcium hydroxide, strontium carbonate and barium hydroxide octahydrate were introduced to the suspension slurries of strontium carbonate and kaolin to decrease the densification sintering temperature of SrAl2Si2O8 ceramics. In addition, the Sr element in SrAl2Si2O8 ceramics are partly substituted with Ba and Ca elements, respectively, to investigate the low-temperature sintering behavior of partly substituted SrAl2Si2O8 ceramics. The results indicated that the addition of flux agents to SrAl2Si2O8 ceramics can availably achieve the densification sintering of SrAl2Si2O8 ceramics at 950 °C, whereas the substitution of Sr with Ca or Ba have a great effect on sintering behaviors and dielectric properties of SrAl2Si2O8 ceramics. Additionally, main crystal phases of the SrAl2Si2O8 ceramics are monoclinic- SrAl2Si2O8 and small quartz, but the evolution of crystal phases also depend on flux agents.  相似文献   

8.
In the present investigation, we are reporting the successive ferroelectric relaxor behavior of (Ba,Sr)TiO3 borosilicate glass ceramics. The ferroelectric relaxor nature of the present glass ceramics is attributed to structural phase transition from the rhombohedral to orthorhombic to tetragonal to cubic. A very high value of dielectric constant was found to be 89,684 at 100 Hz in glass ceramic sample 64[(Ba0.7Sr0.3)TiO3]–30[2SiO2–B2O3]–5[K2O]–1[La2O3], BST5K1L0.3S831 and such large value may be due to space charge polarization in glassy matrix. The various contribution in polarization processes are confirmed by impedance spectroscopic analysis.  相似文献   

9.
SrO–B2O3–SiO2 glass powders were prepared and employed as sintering aids to reduce the sintering temperature of Ba0.4Sr0.6TiO3 ceramics. The effects of glass content and sintering temperature on the densification, dielectric properties and energy storage properties of Ba0.4Sr0.6TiO3 ceramics have been investigated. The relative density characterization results indicate that densification of Ba0.4Sr0.6TiO3 ceramics with glass content becomes apparently from sintering temperature of 1,060 °C. XRD results show all Ba0.4Sr0.6TiO3 ceramics exhibit a perovskite structure without the formation of a secondary phase. The dielectric constant and dielectric loss decreased gradually with increasing glass content. The relationship between dielectric constant and breakdown strength was discussed using the thermochemical model. A discharged energy density of 0.44 J/cm3 with an energy efficiency of 67.4% was achieved for Ba0.4Sr0.6TiO3 ceramic with 2.0 wt% glass addition sintered at 1,180 °C.  相似文献   

10.
The effects of CaO–B2O3–SiO2 (CBS) glass addition on the sintering temperature and dielectric properties of Mg4Nb2O9 ceramics have been investigated using X-ray diffraction, Scanning electron microscopy and Differential thermal analysis. The CBS glass can change to liquid phase at about 750 °C and a small amount of CBS glass addition to Mg4Nb2O9 ceramics can greatly decrease the sintering temperature to about 1,125 °C. It is revealed that the reduced sintering temperature is attributed to the formation of liquid phase. The major phases of the sample are Mg4Nb2O9 and MgNb2O6. The relationship between τ f values and the content of glass additions have the reverse change trends. The Mg4Nb2O9 ceramics with 2wt% glass addition sintered 1,125 °C exhibit good microwave dielectric properties: dielectric constant (ε r ) of 13 and Q·f value of 69,000 GHz.  相似文献   

11.
Calcium copper titanate (CaCu3Ti4O12, CCTO) powder was mixed with boric oxide (B2O3) glassy phase up to 8% by weight to prepare the composite ceramics. The effects of B2O3 incorporation on the microstructures, electric and dielectric properties of CCTO ceramics have been systematically investigated. Adding B2O3 results in both the decrease of the CCTO grain size. These microstructural changes conjointly affect the dielectric constant. In addition, further B2O3 increase leads to its aggregation at grain boundaries. Meanwhile, the B2O3 addition reduces the nonlinear coefficient and influences the breakdown electric field.  相似文献   

12.
This article assessed the glass formability for crystallization of lead titanate (PbTiO3) as the primary phase. It was found that silicate-based glasses formed glass as a block without the need for cold splatting, but B2O3-based glasses needed to be prepared by cold splatting to retard devitrification. Also, incorporation of BaO was favoured by an increase in the concentration of B2O3. DTA showed the crystallization of crystalline phases occurred above glass transition temperature. XRD traces supported the DTA data where the first exothermic peak in each case was presumed to be related to the crystallization of PbTiO3 (PT) phase. XRD also showed the lower c/a ratios compared to pure PT ceramic, which suggested three possibilities for lower values: crystal clamping by the rigid glass matrix, intrinsic size effect and incorporation of impurities in the PT phase.  相似文献   

13.
The effects of CaO–B2O3–SiO2 (CBS) glass addition on the sintering temperature and dielectric properties of Li2ZnTi3O8–TiO2 (LZT) composite ceramics have been investigated. Due to the compensating effect of rutile TiO2f ≈ +450 ppm/ °C), the temperature coefficient of resonant frequency (τf) for Li2ZnTi3O8 + 4 wt% TiO2 with biphasic structure was adjusted to a value near zero. The pure LZT ceramics were usually sintered at high temperature of about 1,160 °C. It was found in our experiment that a small amount of CBS glass additives could effectively lower the sintering temperature of LZT ceramics to 900 °C. With increasing the content of CBS glass, both of dielectric constant (εr) and quality factor (Q × f) value decreased. Typically, the 1 wt% CBS glass added Li2ZnTi3O8 + 4 wt% TiO2 ceramic sintered at 900 °C for 4 h exhibited good microwave dielectric properties of εr = 26.9, Q × f = 23,563 GHz and τf = ?1.5 ppm/ °C, which made it promising for low temperature co-fired ceramics technology application.  相似文献   

14.
40CaO–20B2O3–40SiO2 (abbreviate as CBS) glass-doped Sr0.5Ba0.5Nb2O6 (SBN50) ceramics were fabricated by solid-state ceramic route. The effects of CBS glass addition on the firing, the phase formation, the microstructure and dielectric characterization of SBN50 ceramics were investigated. Results show that the density of the samples firstly increase and then slightly decrease with increasing CBS glass content and the highest density achieved has been 97% of the theoretical density for the sample with 2% (mass fraction) CBS glass. The sintering temperature was significantly reduced from 1,350 to 1,100 °C. X-ray diffraction analysis shows the single phase tungsten bronze type structure is preserved up to 2% CBS glass. However, the samples with more than 5% CBS glass are found to have a secondary phase CaNbO3. The diffuse character and the dielectric constant at room temperature increase as CBS glass content increases. The dielectric constant of the samples at the Curie temperature (T c) firstly increases and then decreases with increasing the content of CSB glass. Interestingly, the grain sizes of SBN phase are found to obviously increase with increase in CBS glass doping level.  相似文献   

15.
The recent developments of energy storage devices are concerned with larger energy storage ability, low loss and good temperature stability. It has a great technological importance in engineering science. The dielectric materials like ceramics and glass ceramics have great interest in electronic ceramic industry due to above concern. The ceramic dielectrics are used as a capacitive element in electronic circuits. The perovskite glass ceramics have very high dielectric constant and low dielectric loss. The high dielectric constant in glass ceramics is attributed to space charge polarization. In order to produce glass ceramics of high dielectric constant, barium titanate glass ceramics is the first discovered ferroelectric perovskite. In this review article, we are summarizing the dielectric behavior of perovskite glass ceramics such as BaTiO3, SrTiO3, PbTiO3, (Ba,Sr)TiO3 and (Pb,Sr)TiO3.  相似文献   

16.
The microwave characteristics and the microstructures of 0.88Al2O3-0.12TiO2 with various amounts of MgO-CaO-SiO2-Al2O3 (MCAS) glass sintered at different temperatures have been investigated. The sintering temperature can be lowered to 1300 °C by the addition of MCAS glass. The densities, dielectric constants (εr) and quality values (Q×f) of the MCAS-added 0.88Al2O3-0.12TiO2 ceramics decrease with the increase of MCAS glass content. The temperature coefficients of the resonant frequency (τf) are shifted to more negative values as the MCAS content or the sintering temperatures increase. The change of the crystalline phases of Al2TiO5 phase and rutile-TiO2 phase has profound effects on the microwave dielectric properties of the MCAS-added Al2O3-TiO2 ceramics. As sintered at 1250 °C, 0.88Al2O3-0.12TiO2 ceramics with 2 wt.% MCAS glass addition exists a εr value of 8.63, a Q×f value of 9578 and a τf value of +5 ppm/°C.  相似文献   

17.
The effect of the substitution of strontium for calcium in the tertiary the SiO2–CaO–P2O5 sol–gel bioactive glass 58S (60SiO2·36CaO·4P2O5, mol%) on its structure and its chemical durability on soaking in simulated body fluids was investigated. 58S was selected as a starting composition, and substitution for calcium was carried out from 0 to 100% with an increment of 25%. A novel phosphate source of diethylphosphatoethyltriethoxysilane, which consists of Si and P connected with ethylene group, was used in this work. XRD and FTIR showed that the gels obtained following drying at 130 °C had a typical sol–gel structure, where a continuous amorphous silica gel network and surface bound mineral salts of Ca(NO3)2 and Sr(NO3)2. Once the gels were heat stabilised to decompose nitrates and incorporate the cations into the network, samples containing Sr formed a strontium silicate crystalline phase. With increasing levels of Sr in the composition, the overall crystallinity of the glass–ceramic increased, while, at the maximum substitution of 100% SrO, macroscopic phase separation was observed, characterised by needle-like crystals of strontium apatite (Sr5(PO4)3OH) and strontium silicate (Sr2SiO4) phases in addition to amorphous regions. Dissolution experiments in Tris-buffered solution showed Sr successfully released into the media even though it existed as a crystalline phase in the glass–ceramic. Further, the glass–ceramics induced nucleation and growth of carbonated hydroxyapatite (HA) on their surface suggesting potential bioactivity of the materials. At higher substitutions (75 and 100% SrO for CaO), HA nucleation was not found to occur this may have been due to low amount of phosphate released from the original glass–ceramic as a result of it being locked up in the strontium apatite phase.  相似文献   

18.
The Mg3B2O6 ceramics with lithium magnesium zinc borosilicate (LMZBS) glass were prepared at a lower sintering temperature. The effects of the glass addition on the densification, phase development, microstructure and microwave dielectric properties of the Mg3B2O6 ceramics were investigated. The addition of LMZBS glass improved the densification and lowered the sintering temperature of Mg3B2O6 ceramics from 1,300 to 950 °C. X-ray diffraction patterns showed that Mg3B2O6 transformed into Mg2B2O5 and a new phase, Li2ZnSiO4, crystallized from the glass phase. Because of the high dielectric performance of these phases, Mg3B2O6 mixed with 55 wt% LMZBS sintered at 950 °C for 3 h had εr = 6.8, Q × f = 50,000 GHz, and τf = ?64 ppm/°C at 7.28 GHz. The chemical compatibility of ceramic-glass composites with Ag was also investigated for LTCC.  相似文献   

19.
Effects of Li2O–B2O3 on the sintering behavior and the microwave dielectric properties of (Zn0.8Mg0.2)2SiO4–TiO2 ceramics were investigated as a function of Li2O–B2O3 content and sintering temperature. The Li2O–B2O3 combined additives successfully reduced the sintering temperature of (Zn0.8Mg0.2)2SiO4–TiO2 ceramics from 1,250 °C to 900 °C. With the increase of Li2O–B2O3 content, the TiO2 phase decreased and the unknown second phase increased, which led to the dielectric constant (ε r ) and the maximum Q × f value decrease, and the temperature coefficient of resonant frequency (τ f ) shift to a negative value. The specimens with 3 wt%Li2O–B2O3 sintered at 900 °C for 2 h showed ε r of 8.84, Q × f value of 15,500 GHz, and τ f of 17.8 ppm/°C. And the material was compatible with Ag electrodes, which made it a promising ceramic for low temperature co-fired ceramics technology application.  相似文献   

20.
Glasses in the system (65 −x) [SrO·TiO2] − (35) [2SiO2·B2O3] − (x) [Bi2O3] wherex = 1, 5, 10 (wt%) prepared by melting in alumina crucible (1375–1575 K), were subjected to different heat treatment schedules followed by DTA studies. Crystallization study showed the formation of Sr2B2O5 as major phase at low temperature (≈950°C) heat treatment. At high temperatures, TiO2 and SrTiO3 with or without Sr2B2O5 crystallize out depending on heat treatment. In this paper, the influence of variation in composition, thermal treatment on the nature of crystallizing phases as well as on the resulting microstructures are investigated through XRD, IR and SEM. Uniform crystallization was achieved by suitable addition of Bi2O3 and proper heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号