首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plastic deformation behavior of dual-phase Ni–31Al intermetallics at elevated temperature was examined. It was found that the alloy exhibited good plasticity under an initial strain rate of 1.25 × 10−4 s−1 to 8 × 10−3 s−1 in a temperature range of 950–1075 °C. A maximum elongation of 281.3% was obtained under an initial strain rate of 5 × 10−4 s−1 at 1000 °C. The strain rate sensitivity, m value was correlated with temperature and initial strain rate, being in the range of 0.241–0.346. During plastic deformation, both the two phases Ni3Al and NiAl in dual-phase Ni–31Al could co-deform without any void formation or debonding, the initial coarse microstructure became much finer after plastic deformation. Dislocation played an important role during the plastic deformation in dual-phase Ni–31Al alloy, the deformation mechanism in dual-phase Ni–31Al could be explained by continuous dynamic recovery and recrystallization.  相似文献   

2.
The hot deformation behavior and microstructure evolution of twin-roll-cast of Mg–2.9Al–0.9Zn–0.4Mn (AZ31) alloy has been studied using the processing map. The tensile tests were conducted in the temperature range of 150–400 °C and the strain rate range of 0.0004–4 s−1 to establish the processing map. The different efficiency domains and flow instability region corresponding to various microstructural characteristics have been identified as follows: (i) the continuous dynamic recrystallization (CDRX) domain in the range of 200–280 °C/≤0.004 s−1 with fine grains which provides a potential for warm deformation such as deep drawing; (ii) the discontinuous dynamic recrystallization (DDRX) domain around 400 °C at high strain rate (0.4 s−1 and above) with excellent elongation which can be utilized for forging, extrusion and rolling; (iii) the grain boundary sliding (GBS) domain at slow strain rate (below 0.004 s−1) above 350 °C appears abundant of cavities, which result in fracture and reduce the ductility of the adopted material; and (iv) the flow instability region which locates at the upper left of the processing map shows the metallographic feature of flow localization.  相似文献   

3.
The hot deformation behavior of spheroidal graphite cast iron (SGCI) was investigated quantitatively from 600 °C to 950 °C at high strain rate of 10 s−1 by compression tests on a Gleeble-1500 simulator. The results show that the peak strain increases gradually with increasing deformation temperatures in the range of 600–800 °C and decreases when the temperature is raised to 800 °C and above. The optimum deformation temperature range is determined at 700–900 °C. The graphite particles become spindles or flakes after deformation, even some graphite collapse in the compressed specimens with about 0.7 peak strains. The graphite area fraction decreases as the temperature increases, at the same time, the high peak strain promotes the dissolving of carbon.  相似文献   

4.
Isothermal compression tests of as-cast Ti–6A1–2Zr–2Sn–3Mo–1Cr–2Nb (TC21) titanium alloy are conducted in the deformation temperature ranging from 1000 to 1150 °C with an interval of 50 °C, strain rate ranging from 0.01 to 10.0 s−1 and height reductions of 30%, 45%, 60% and 75% on a computer controlled Gleeble 3500 simulator. The true stress–strain curves under different deformation conditions are obtained. Based on the experimental data, the effects of deformation parameters on the hot deformation behavior of as-cast TC21 alloy were studied. The deformation mechanisms of the alloy in the whole regimes are predicted by the power dissipation efficiency and instability parameter and further investigated through the microstructure observation. It is found that at the height reductions of 30%, 45% and 60%, the softening of stress–strain curves at high strain rate (>1.0 s−1) is mainly associated with flow localization, which is caused by local temperature rise, whereas at low strain rate, the softening is associated with dynamic recrystallization (DRX). However, the instability showed in flow localization occurs at low strain rate of 0.01 s−1 when the height reduction reaches 75%. In addition, the effects of strain rate, deformation temperature and height reduction on microstructure evolution are discussed in detail, respectively.  相似文献   

5.
The deformation behavior in isothermal compression of Ti–6Al–4V alloy is investigated in the deformation temperatures ranging from 1093 K to 1303 K, the strain rates ranging from 0.001 s−1 to 10.0 s−1 at an interval of an order magnitude and the height reductions ranging from 20% to 60% at an interval of 10%. Based on the experimental results in isothermal compression of Ti–6Al–4V alloy, the effect of processing parameters and grain size of primary α phase on the strain rate sensitivity exponent m and the strain hardening exponent n is in depth analyzed. The strain rate sensitivity exponent m at a strain of 0.7 and strain rate of 0.001 s−1 firstly tends to increase with the increasing of deformation temperature, and maximum m value is obtained at deformation temperature close to the beta-transus temperature, while at higher deformation temperature it drops to the smaller values. Moreover, the strain rate sensitivity exponent m decreases with the increasing of strain rate at the deformation temperatures below 1253 K, but the m values become maximal at a strain rate of 0.01 s−1 and the deformation temperature above 1253 K. The strain rate affects the variation of strain rate sensitivity exponent with strain. Those phenomena can be explained reasonably based on the microstructural evolution. On the other hand, the strain hardening exponent n depends strongly on the strain rate at the strains of 0.5 and 0.7. The strain affects significantly the strain hardening exponent n due to the variation of grain size of primary α phase with strain, and the competition between thermal softening and work hardening.  相似文献   

6.
The deformation behavior of a Ti40 titanium alloy was investigated with compression tests at different temperatures and strain rates to evaluate the activation energy and to establish the constitutive equation, which reveals the dependence of the flow stress on strain, strain rate and deformation temperature. The tests were carried out in the temperature range between 900 and 1100 °C and at strain rates between 0.01 and 10 s−1. Hot deformation activation energy of the Ti40 alloy was calculated to be about 372.96 kJ/mol. In order to demonstrate the workability of Ti40 alloy further, the processing maps at strain of 0.5 and 0.6 were generated respectively based on the dynamic materials model. It is found that the dynamic recrystallization of Ti40 alloy occurs at the temperatures of 1050-1100 °C and strain rates of 0.01-0.1 s−1, with peak efficiency of power dissipation of 64% occurring at about 1050 °C and 0.01 s−1, indicating that this domain is optimum processing window for hot working. Flow instability domains were noticed at higher stain rate (≥1 s−1) and stain (≥0.6), which located at the upper part of the processing maps. The evidence of deformation in these domains has been identified by the microstructure observations of Ti40 titanium alloy.  相似文献   

7.
Based on the experimental results from the hot compression tests of 42CrMo steel, the efficiencies of power dissipation and instability parameter were evaluated. The effects of strain on the efficiency of power dissipation and instability parameter of 42CrMo steel have been discussed in detail. Processing maps were constructed by superimposition of the instability map over the power dissipation map. The dynamic recrystallization domains and instable zones were identified in the processing map. The effects of strain on microstructural evolutions were correlated with the processing maps. According to the 3D processing maps, the optimum domain of hot deformation is in the temperature range of 1050–1150 °C and strain rate range of 0.01–3 s−1, with its peak efficiency of 32% at about 1140 °C and 0.23 s−1, which are the optimum hot working parameters.  相似文献   

8.
In this paper laser beam welding (LBW) was used to join Ti–6Al–4V alloy as a pre-forming operation before superplastic deformation (SPF) process. Superplastic deformation behavior of laser welded Ti–6Al–4V alloy was investigated. The results indicated that the welded Ti–6Al–4V alloy had good superplasticity when deformed at temperature range of 870–920 °C and strain rate range of 10−3–10−2 s−1, and the elongation was 233–397%. The microstructure observation indicated that dynamic recrystallization happened in the weld bead, and the acicular structure of weld bead was transforming into equiaxed grains during tensile process.  相似文献   

9.
In this paper, an adaptive network-based fuzzy inference system (ANFIS) model has been established to predict the flow stress of Ti600 alloy during hot deformation process. This network integrates the fuzzy inference system with a back-propagation learning algorithm of neural network. The experimental results were obtained from Gleeble-1500 thermal-simulator at deformation temperatures of 800–1100 °C, strain rates of 0.001–10 s?1, and height reduction of 70%. In establishing this ANFIS model, strain rate, deformation temperature and the strain are entered as input parameters while the flow stress are used as output parameter. After the training process, the fuzzy membership functions and the weight coefficient of the network can be optimized. A comparative evaluation of the predicted and the experimental results has shown that the ANFIS model used to predict the flow stress of Ti600 titanium alloy has a high accuracy and with absolute relative error is less than 17.39%. Moreover, the predicted accuracy of flow stress during hot deformation process of Ti600 titanium alloy using ANFIS model is higher than using traditional regression method, indicating that the ANFIS model was an easy and practical method to predict flow stress for Ti600 titanium alloy.  相似文献   

10.
The transient flow behaviour in Timetal 834 titanium alloy was studied in the temperature range between 400 °C and 475 °C by means of stress relaxation and reloading during tensile testing at a strain rate of 6.67 × 10−4 s−1. The increment in flow stress during reloading (Δσf) and the decrement in flow stress during stress relaxation (Δσr) were measured at different strains at each temperature. The observation of maximum value of Δσf and Δσr, normalized with respect to the Young's modulus at the corresponding temperature, confirmed that the maximum dynamic strain aging (DSA) effect in this alloy occurs at 450 °C.  相似文献   

11.
Isothermal compression of Ti-17 titanium alloy with lamellar starting structure at the deformation temperatures ranging from 780 °C to 860 °C, the strain rates ranging from 0.001 to 10 s−1, and the height reductions ranging from 15% to 75% with an interval 15% were carried out. Based on experimental results, 3-D processing maps including strain were developed and used to identify various microstructural mechanisms and distinguish the safe and unsafe domains. The processing maps exhibit two maximum power dissipation efficiency domains and dynamic globularization takes place in this two domains. The first domain occurs at 800–860 °C and at strain rates lower than 0.01 s−1, and the second occurs at 780–800 °C and at strain rates lower than 0.01 s−1. With the increasing of the strains, the values of maximum power dissipation efficiency in this two domains increase. One flow instability domain due to adiabatic shear bands and lamellar kinking occurs at strain rates higher than 0.487 s−1, lower temperature, and higher strain above 0.2. The instability deformation region increases with increasing strain, strain rate, and decreasing temperature.  相似文献   

12.
Dynamic recrystallization during high temperature deformation of magnesium   总被引:6,自引:0,他引:6  
As a consequence of the high critical stresses required for the activation of non-basal slip systems, dynamic recrystallization plays a vital role in the deformation of magnesium, particularly at a deformation temperature of 200 °C, where a transition from brittle to ductile behavior is observed. Uniaxial compression tests were performed on an extruded commercial magnesium alloy AZ31 at different temperatures and strain rates to examine the influence of deformation conditions on the dynamic recrystallization (DRX) behavior and texture evolution. Furthermore, the role of the starting texture in the development of the final DRX grain size was investigated. The recrystallized grain size, measured at large strains (  −1.4) seemed to be more dependent on the deformation conditions than on the starting texture. In contrast to pure magnesium, AZ31 does not undergo grain growth at elevated deformation temperatures, i.e. 400 °C, even at a low strain rate of 10−4 s−1. Certain deformation conditions gave rise to a desired fully recrystallized microstructure with an average grain size of 18 μm and an almost random crystallographic texture. For samples deformed at 200 °C/10−2 s−1, optical microscopy revealed DRX inside of deformation twins, which was further investigated by EBSD.  相似文献   

13.
The tensile behavior of a newly developed Ti–6Al–2Sn–2Zr–3Mo–1Cr–2Nb–Si alloy, referred as TC21, is investigated at temperatures ranging from 298 to 1023 K and under constant strain rate loadings ranging from 0.001 to 1270 s−1. The results show that temperature and strain rate have significant effects on the tensile behavior of the material. At low strain rates of 0.001 and 0.05 s−1, a discontinuity is found in the yield stress–temperature curve. And the discontinuity temperature increases with increasing strain rate. The analysis of temperature and strain rate dependence of unstable strain indicates a high-velocity-ductility phenomenon at elevated temperatures. Scanning electron microscope (SEM) analysis shows that the material is broken in a mixture manner of ductile fracture and intergranular fracture under low strain rates at room temperature, while the fracture manner changes to totally ductile fracture under other testing conditions. The width and depth of ductile dimples increase with increasing temperature. No adiabatic shear band is found in the tensile deformation of the material.  相似文献   

14.
Ultrafine-grained Al–4Y–4Ni and Al–4Y–4Ni–0.9Fe (at.%) alloys were synthesized by the consolidation of atomized powders and subsequent hot extrusion. The mechanical behavior of these two alloys has been studied by performing uniaxial tension tests ranging from room temperature to 350 °C. These alloys, with high volume fraction of second-phase particles, exhibited ambient temperature tensile strength ranging from 473 to 608 MPa and plastic elongation ranging from 6.7 to 9.6% at an initial strain rate of 1 × 10−3 s−1. However, lower ductility was observed with decreasing strain rate at the intermediate temperature ranging from 150 to 250 °C for Al–Y–Ni–Fe alloys due to limited work hardening.  相似文献   

15.
Total strain controlled low cycle fatigue tests on IMI 834 have been conducted in air in the temperature range between 375 and 500 °C at a temperature interval of 25 °C at the nominal strain rate of 6.67 × 10−4 s−1. The observed maximum peak stress ratio, minimum half-life plastic strain range and lower fatigue life at 425 °C indicates the occurrence of dynamic strain aging (DSA). Pronounced deformation bands, increased dislocation density and non-uniform dispersion of dislocations inside primary α grains observed by the study of transmission electron microscopy supports the occurrence of dynamic strain aging. Initial cyclic softening was attributed to shearing of Ti3Al precipitates as revealed by TEM evidences.  相似文献   

16.
In order to study the workability and establish the optimum hot forming processing parameters for 42CrMo steel, the compressive deformation behavior of 42CrMo steel was investigated at the temperatures from 850 °C to 1150 °C and strain rates from 0.01 s−1 to 50 s−1 on Gleeble-1500 thermo-simulation machine. Based on these experimental results, an artificial neural network (ANN) model is developed to predict the constitutive flow behaviors of 42CrMo steel during hot deformation. The inputs of the neural network are deformation temperature, log strain rate and strain whereas flow stress is the output. A three layer feed forward network with 12 neurons in a single hidden layer and back propagation (BP) learning algorithm has been employed. The effect of deformation temperature, strain rate and strain on the flow behavior of 42CrMo steel has been investigated by comparing the experimental and predicted results using the developed ANN model. A very good correlation between experimental and predicted result has been obtained, and the predicted results are consistent with what is expected from fundamental theory of hot compression deformation, which indicates that the excellent capability of the developed ANN model to predict the flow stress level, the strain hardening and flow softening stages is well evidenced.  相似文献   

17.
The high temperature flow behavior of as-extruded Ti–47.5Al–Cr–V alloy has been investigated at the temperature between 1100 °C and 1250 °C and the strain rate range from 0.001 s 1 to 1 s 1 by hot compression tests. The results showed that the flow stress of this alloy had a positive dependence on strain rate and a negative dependence on deformation temperature. The activation energy Q was calculated to be 409 kJ/mol and the constitutive model of this material was established. By combining the power dissipation map with instability map, the processing map was established to optimize the deformation parameters. The optimum deformation parameter was at 1150 °C–1200 °C and 0.001 s 1–0.03 s 1 for this alloy. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The material underwent instability deformation at the strain rate of 1 s 1, which was predicted by the instability map. The surface fracture was observed to be the identification of the instability.  相似文献   

18.
Deformation behavior in isothermal compression of the TC11 titanium alloy   总被引:1,自引:0,他引:1  
Isothermal compression of the TC11 titanium alloy has been conducted on Gleebe-1500 hot-simulator at the deformation temperatures ranging from 1023 K to 1323 K, the strain rates ranging from 0.001 s−1 to 10.0 s−1, and the height reductions ranging from 50% to 70%. The effect of deformation temperature, strain rate and strain on the flow stress and the apparent activation energy for deformation is in depth analyzed. The experimental results show that the apparent activation energy for deformation in isothermal compression of the TC11 titanium alloy decreases with the increasing of strain. Moreover, the apparent activation energy for deformation in α + β two-phase region of the TC11 titanium alloy increases with the increasing of deformation temperature and decreases with the increasing of strain rate. A power dissipation efficiency map in isothermal compression of the TC11 titanium alloy is constructed at a strain of 0.6, in which three domains with higher power dissipation efficiency are observed, and deformation characteristics of the above-mentioned domains are analyzed. Finally, optical micrographs of the TC11 titanium alloy obtained on a Leica DMLP microscope showed the evidence of deformation in three domains.  相似文献   

19.
During hot compression, Mg17Al12 (β) precipitates show strong influence on the microstructural changes of 415 °C-24 h homogenized AZ91 alloy. When compressed at 300 °C and 350 °C, dynamic recrystallization (DRX) only occurs near grain boundaries with discontinuous β precipitate pinning at the newly DRXed grain boundaries. With increasing compression temperature and decreasing strain rate, the β-precipitating region expands; however, the amount of pinning precipitates decreases, resulting in increases in the DRX ratio and average DRXed grain size. With a compression ratio of only 50%, the specimen compressed at 350 °C and a strain rate of 0.2 s−1 (designated 350 °C-0.2 s−1 compressed specimen) shows an ultimate tensile strength (UTS) of 334 MPa, a 0.2% proof stress (PS) of 195 MPa and an enough elongation of 17.9%. After a subsequent aging treatment at 180 °C, due to the large number of β precipitates, the strength of the compressed specimens are further improved, and the specimen peak aged after compression at 400 °C and 0.2 s−1 shows UTS of 364 MPa and PS of 248 MPa with a moderate elongation of 7.7%.  相似文献   

20.
Ring hoop tension testing (RHTT) was performed on circumferential samples taken from two Mg-based (+Al, Zn, Mn) alloy tubes. Two initial strain rates, 0.001 and 0.1 s−1, were used during these tests. The experiments were conducted at temperatures from ambient to 300 °C. The microstructural evolution during deformation was examined by optical microscopy and electron backscattered diffraction (EBSD) techniques. At moderate temperatures and/or high strain rates, the accompanying c-axis strains were mainly accommodated by twin formation. Contraction twins were formed in grains containing radial basal poles and extension twins in those with circumferential basal poles. At temperatures above 200 °C and the lower strain rate (0.001 s−1), the formation of voids in the partially dynamically recrystallized regions caused premature fracture. The unusual types of twinning behavior displayed under these conditions are responsible for the ductility and work hardening differences observed when the present results are compared with those of previous tension tests carried out along the longitudinal direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号