首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
李慧  杨石  周建明 《洁净煤技术》2020,26(2):109-114
半焦是低阶煤经低温热解后的产物,其中半焦粉与煤粉工业锅炉常用煤种烟煤相比价格低廉。若能将半焦粉用作煤粉工业锅炉的燃料,既可拓宽煤粉工业锅炉的适用燃料范围,又可增强煤粉工业锅炉的市场竞争力。由于半焦挥发分低、固定碳高,实现其着火和稳定燃烧需要更高的温度,同时,降低NOx初始排放也是一个技术难题。为了实现半焦在煤粉工业锅炉中的稳定燃烧及NOx排放的降低,采用两段式滴管炉开展半焦空气分级燃烧NOx排放规律研究。笔者对半焦空气不分级燃烧NOx排放规律进行了研究,主要探究了主燃区温度(1 000~1 400℃)及过量空气系数的影响,为后续空气分级燃烧降低NOx的效果提供对比依据。半焦空气分级燃烧试验主要研究了主燃区温度(1 000~1 400℃)及二次风比例(0.4~0.8)的影响,并从燃尽率、NOx减少比例、灰样微观孔隙和形貌等方面进行论证,试验结果表明,在空气不分级燃烧条件下,即燃尽风配风比例为0时,随着主燃区温度升高,NOx排放浓度随之迅速升高;随着过量空气系数增加,NOx浓度先迅速增加,过量空气系数大于1.15时,NOx浓度增速变缓;在空气分级燃烧中,相同主燃区温度条件下,二次风比例由高到低变化时,NOx排放呈先迅速下降后缓慢回升的变化趋势,燃尽率先快速升高而后趋于平缓。二次风比例为0.56时(即燃尽风率为0.39),燃尽率达90%,NOx排放浓度降至最低,为120 mg/m^3以下,此时是试验条件下的最佳二次风比例。  相似文献   

2.
燃煤耦合污泥发电技术研究主要聚焦在掺混比等条件的影响,而主燃区过量空气系数等因素的影响规律尚不清晰。鉴于此,采用涡耗散模型对600 MW四角切圆煤粉锅炉掺烧市政污泥进行数值模拟研究,分析了污泥掺混比例、主燃区过量空气系数以及二次风配风方式对燃煤锅炉内污泥掺混燃烧及NOx生成的影响。结果表明:随着污泥掺混比增加,炉膛整体温度下降,影响燃烧稳定性,同时炉膛出口NOx浓度有所降低。当污泥掺混比例增长至20%,炉膛出口温度约下降100 K,NOx浓度减少53.2%。而污泥掺混比例对于炉膛内速度场分布影响较小。随着主燃区过量空气系数由0.72增加至0.96,炉膛出口温度增幅较小,仅增加15 K左右,而NOx浓度则大幅增长,由174.39 mg/m3增长至352.09 mg/m3,约增长50.4%。在本文过量空气系数范围内,考虑温度和NOx浓度,推荐主燃区过量空气系数0.84。不同二次风配风对燃煤锅炉掺烧污泥影响差异较大。5种配风方式下,炉膛出口温度和NOx浓度有较大变化。鼓腰配风下炉膛出口温度最低,为1 289 K,而倒塔配风温度最高,为1 341 K。同时鼓腰配风下NOx浓度较高,为207.77 mg/m3,束腰配风NOx浓度较低,为156.42mg/m3。综合温度和NOx浓度,本文二次风配风推荐采用束腰配风方式。  相似文献   

3.
为应对燃煤工业锅炉日益严苛的排放标准,提出了一种新型低NO_x旋流燃烧器,将煤粉预燃与燃烧器空气分级、炉膛空气分级进行耦合,通过改变燃烧系统的配风布置对煤粉预燃燃烧状态进行调整,研究了一次风率、内外二次风率、外二次风入射方式、循环风率和燃尽风率对NO_x排放特性的影响。结果表明:在试验工况下当一次风率从15.4%提高到28.7%,预燃室内氧气浓度增大,一次风携带的氧气可直接将煤粉热解释放挥发分中含氮化合物HCN、NH_3等中的N氧化为NO,NO_x生成量由284.4 mg/m~3逐渐增至326.7 mg/m~3。当内外二次风率比由0.46增大到1.4,NO_x排放浓度先下降后上升;由于内二次风量影响预燃室内过量空气系数和湍动强度,外二次风量影响炉膛内部主燃区煤粉发生燃烧反应的湍动混合强度,在二次空气配比变化的综合作用下,内外二次风率比为1.0时,NO_x排放值最低为211.2 mg/m~3。随着外二次风内部入射风量与端面入射风量比值由0增大到4.56,NO_x生成浓度先下降后上升;由预燃室端面入射的外二次空气射流边界较长,主燃区相对较大,燃烧整体较为均衡,而从预燃室内部入射的外二次风促进了预燃室出口气粉混合物在炉膛内与助燃空气的混合;当外二次风内部、端面射流风率比为0.25时,煤粉在预燃室出口区域的湍动强度提高,在局部还原性气氛下,NO_x生成浓度有最低值230.9 mg/m~3。当循环风率从0增大到30.6%时,内外二次风中氧气浓度降低,预燃室和炉膛主燃区还原性气氛增强,挥发分中含氮化合物HCN、NH_3等中的N迁移形成N_2的概率增加,NO_x排放量由250.7 mg/m~3逐渐降低到221.1 mg/m~3。随着燃尽风率由0提高到29%,NO_x排放值先减小后增大;燃尽风率提高时二次风率随之降低,内外二次风湍动扩散能力减弱,主燃区还原性气氛增强;燃尽风率进一步提高使得主燃区氧量不足,燃尽区氧化性氛围较强,大量焦炭和含氮化合物在燃尽区发生氧化反应,导致NO_x生成量增加;当燃尽风率为19.6%时,NO_x生成值最低为253.5 mg/m~3。整体上,当一次风率为17%~19%,内外二次风率比为0.8~1.0,外二次风由预燃室端面入射,循环风率为15%~20%,燃尽风率为19%~22%时,NO_x排放值为212~231 mg/m~3,相比试验工况下最大NO_x排放量下降29%~35%。  相似文献   

4.
低氮燃烧改造是燃煤电厂降低氮氧化物排放最主要的策略之一。空气分级燃烧技术因其技术成熟、成本低廉等优势在燃用烟煤的锅炉中得到广泛应用。然而,随着煤/风比的进一步增加,NO_x降幅减小,未燃尽碳含量显著变大。与燃用烟煤的锅炉相比,燃用低挥发分煤种锅炉的低氮改造工作更加困难和复杂。四角切圆贫煤锅炉的三次风会影响风煤混合、燃烧气氛和温度,这些都会对煤粉燃烧过程和NO_x生成产生显著影响,若仅采用空气分级技术,并不能满足NO_x排放标准。因此,在低氮燃烧改造方案设计过程中,需寻求最佳的三次风布置方案以实现低氮高效燃烧。将一台300 MW四角切圆贫煤燃烧锅炉作为研究对象,采取CFD数值模拟方法,考察了三次风布置方式对锅炉燃烧特性的影响。结果表明:当三次风布置在燃烧区下部时,下层一次风和三次风中的煤粉迅速着火燃烧,温度攀升,火焰中心上移; NO_x还原区变长,此时炉膛出口NO_x浓度最低,为405 mg/Nm~3;三次风的下移导致炉膛主燃区中上部氧量较少,煤粉不充分燃烧,燃尽率降低。当三次风布置在主燃区中部时,由于三次风风温较低,导致炉膛燃烧温度下降,一定程度上抑制了热力型NO_x的生成,炉膛出口NO_x排放量减少;三次风的喷入增加了主燃区过量空气系数,有利于煤粉的充分燃烧,燃尽率提高。当三次风布置在主燃区上部时,随着三次风位置的升高,三次风煤粉整体燃烧燃尽区域上移,折焰角附近温度依次升高;三次风位置的上移增加了NO_x还原区的长度,三次风喷口位置越高,炉膛出口NO_x浓度越低;三次风上移导致三次风煤粉在炉膛的停留时间变短,造成燃烧不充分,飞灰含碳量增加,燃尽率降低。此外,对改造后飞灰及大渣含碳量,炉膛出口烟温和NO_x浓度等参数进行现场测量,NO_x排放浓度模拟值和测量值分别为445和448 mg/Nm~3,飞灰含碳量分别为1. 92%和1. 48%,数值模拟结果与现场测量结果吻合较好。  相似文献   

5.
在6kWth鼓泡流化床实验台上进行了城市污泥的燃烧实验,研究了烟气再循环气氛和空气气氛下燃烧温度、过量氧气系数、二次风比率对气态污染物排放特性的影响。研究结果表明:燃烧温度升高,NO排放浓度明显升高,SO2排放浓度亦呈上升趋势;过量氧气系数提高,NO排放浓度呈显著上升趋势,SO2排放浓度则呈下降趋势;增大二次风比率,NO排放浓度呈现先降低后升高的趋势,但总体减排效果并不明显,SO2排放浓度出现少量增长;烟气再循环工况下,NO排放浓度随燃烧温度和过量氧气系数变化的趋势与空气气氛燃烧时一致;烟气再循环率从0增加至1,NO排放浓度明显下降;烟气再循环率达到较高值后,NO排放浓度随之提高而降低的趋势减弱;烟气再循环率逐渐升高过程的前期,烟气中CO浓度出现显著升高;再循环率超过0.3后,CO浓度在一定范围内波动,不再升高。  相似文献   

6.
采用RFG富氧燃烧方法在新疆某电厂350 MW机组锅炉上进行数值模拟,对燃烧时炉内温度场、CO与O2及NOx排放进行分析。结果表明:在21%、25%、29%富氧燃烧工况下,NOx排放浓度均低于空气燃烧时的浓度;四角切圆燃烧煤粉锅炉采用富氧燃烧后,炉膛出口NOx浓度由空气燃烧时的359 mg/m3分别降低到235 mg/m3、272 mg/m3、305 mg/m3;高浓度的CO2与煤粉反应生成CO,形成还原性氛围,有助于抑制NOx生成以及增大对已生成NOx还原的概率;在氧气含量为21%的浓度下,通过增加循环烟气中NO含量可以减少NOx的生成和排放。  相似文献   

7.
随着环保标准提高,电站锅炉NO_x排放量控制日益严格。低氮改造可以有效降低NO_x生成,而对于改造后低负荷下炉内燃烧特性研究有限。对某电厂低氮改造后的一台300 MW四角切圆煤粉锅炉进行了低负荷下多工况燃烧特性的数值模拟,研究了过量空气系数、燃尽风量和一次风喷口给煤量对炉内速度场、温度场、组分浓度场的影响。通过改进网格系统,提高模拟结果的准确性。数值模拟结果和试验测量值偏差较小,说明其数值模拟结果可信。结果表明:随着过量空气系数的增加,炉内燃烧温度升高,还原性物质减少,NO_x排放量增加,当过量空气系数从1.20增加到1.30时,NO_x排放从221.12 mg/m~3增加到196.26 mg/m~3;随着燃尽风量增加,主燃区温度降低,燃尽区温度升高,主燃区温度的降低抑制了热力型NO_x的生成,NO_x排放量降低,当燃尽风量从20%增加到30%时,NO_x从231.21 mg/m~3降低到180.95 mg/m~3;一次风喷口给煤量变化对炉膛内温度场、组分浓度场和NO_x生成影响较小。  相似文献   

8.
循环流化床燃烧在高过剩空气下的NO_x排放   总被引:1,自引:1,他引:0  
提出了借助循环流化床在高过剩空气系数下燃烧的技术提供高温空气的新构思。搭建了循环流化床燃烧热态试验台,完成了循环流化床燃烧在高过剩空气系数下的NOx排放特性试验,结果表明:循环流化床在高过剩空气系数下燃烧温度分布均匀,燃烧稳定性好;过剩空气系数增大,氮氧化物排放增加;提升管二次风高度的增加和还原区系数的减小有利于控制氮氧化物的排放水平和减少煤中的N向NOx的转化比。在过剩空气系数为1.6、还原区系数为0.72和二次风高度为1 500 mm时,循环流化床NOx排放为339 mg/m3,煤中的N向NOx转化比为21%。循环流化床高温空气NOx的浓度对燃料高温燃烧NOx排放的影响需要进一步研究。  相似文献   

9.
罗伟 《洁净煤技术》2020,26(2):93-101
焦炭气化反应对空气深度分级工况下燃烧及污染物的生成具有重要影响。笔者采用滴管炉试验与数值计算相结合的方法,研究了主燃区过量空气系数SR1在1.2→0.6变化过程中,焦炭气化对空气深度分级工况下煤粉燃烧和NOx排放特性的影响规律。通过对比滴管炉试验数据与传统模型和改进模型(考虑焦炭气化)结果可知,传统模型对空气分级燃烧的还原性气氛预测存在一定缺陷,改进模型与试验结果较吻合。滴管炉试验及改进模型计算结果表明,空气深度分级工况下,主燃区极度缺氧,燃烧过程由最初的挥发分着火(R1和R2)和焦炭不完全氧化(R4)过渡到以焦炭气化反应(R5和R6)为主导的燃烧状态,大量CO生成,高浓度CO2逐渐被消耗,直至还原区段结束,随着燃尽风加入,O2含量增加,CO被迅速消耗(以R2为主),CO2生成。空气分级工况下NOx排放特性表现为:燃烧器附近NOx浓度高,伴随还原性气氛的形成,出现一定程度的下降后保持较低的NOx水平,随着燃尽风的加入,出现一定程度的"反弹",这是因为还原区结束时,一部分未完全被还原的氮中间体在燃尽风加入后被迅速氧化造成的。  相似文献   

10.
为达到严格的超低排放标准,目前国内绝大部分电站锅炉均实施了NOx排放控制技术改造。针对一台燃用烟煤的420 t/h四角切圆煤粉锅炉,将原双通道燃烧器改造为水平浓淡燃烧器并加装3层燃尽风(SOFA),从而达到低氮燃烧的效果。应用数值模拟方法进行方案论证,研究了一次风浓淡比、SOFA风率和SOFA风射流角度等参数对锅炉燃烧状况及NOx排放规律的影响,并提出最佳改造方案。随着浓淡比的增加,炉膛出口温度逐渐增加,而NOx含量逐渐降低。浓淡比为4∶1时,飞灰含碳量最低。随着浓淡比增大,CO浓度升高,增强了主燃区域的还原性,抑制挥发分含氮中间产物氧化成NO;另一方面,浓淡比增大使浓煤粉气流挥发分析出速率加快,强化挥发分含氮中间产物HCN和NH3将已生成的NO还原为N2;同时,淡侧气流煤粉浓度低,含氮基团析出量变小,与氧反应生成NO的量减少。随着SOFA风率的增加,炉膛出口烟温、飞灰含碳量增加,20%SOFA风率时,NOx浓度较高,SOFA风率由30%增加到40%时,NOx浓度基本保持不变。随着SOFA风率的增加,主燃区形成的低O2高CO浓度的强还原性气氛抑制了HCN及NH3被氧化成NO,反而促进了其与已生成的NO发生反应生成N2。此外,高SOFA风风率下,主燃区高温区缩小,生成的热力型NOx也相应减少。随着SOFA风射流角度上扬,还原区加长,有利于降低NOx浓度,但燃尽区的火焰中心会上升,煤粉燃尽时间变短,炉膛出口温度和飞灰含碳量上升。随射流角度增加,O2浓度降低而CO浓度升高,这是由于射流角度增大延迟了煤粉燃尽过程,增加了化学不完全燃烧损失;这种低氧高CO的强还原性气氛大大抑制了NOx生成。根据数值模拟结果,确定试验锅炉的低氮燃烧改造方案为:选择浓淡比为4∶1的水平浓淡燃烧器作为改造燃烧器,SOFA风率定为30%,SOFA射流角度上扬15°。改造后锅炉燃烧稳定,NOx排放显著降低,为220 mg/Nm3左右(降幅达65%~70%),而飞灰含碳量保持在3%~4%,表明改造方案可达到良好的低氮燃烧效果。  相似文献   

11.
对甲烷/富氧同轴射流扩散火焰燃烧条件下氧化剂流速对NOx排放的影响进行了实验研究. 通过对火焰径向温度分布、火焰形态以及喷嘴出口附近扩散燃烧的流场的观测,分析了不同条件下NOx的生成特性. 结果显示,在保持氧化剂流量不变的条件下,NOx排放指数EINOx随氧化剂流速的增加而减小,在保持氧浓度及过量空气系数不变的条件下,小火焰有利于保持较低的EINOx.  相似文献   

12.
通过数值模拟的方式,研究了新型液排渣燃烧器在不同过量空气系数下的速度、温度以及组分浓度的分布情况.结果表明,在较小的过量空气系数(α=0.7,0.8)时,煤的燃尽情况较差;α≥1.0时,煤粉燃烧更完全,但却不利于氮氧化物的控制.采用分级燃烧的方式,控制燃烧器内为欠氧燃烧(取α=0.9)以降低局部氧浓度,既能达到液态排渣要求,又可抑制NOx的生成,并在高温烟气进入炉膛降温之后再补充燃尽风,使得可燃成分在炉膛内再次燃烧,提高燃尽率.通过模拟与实验相结合的方式,对燃烧器进行三种不同负荷下的热态实验研究,该燃烧器负荷适应性好,模拟结果与实验结果相吻合.  相似文献   

13.
针对一实际尺寸的回转窑建立模型,分别进行了空气助燃(21% O2)和二次风富氧(23% O2)燃烧的数值模拟研究。结果表明,二次风富氧后,高温区覆盖形状没有明显变化,仍呈“棒槌状”;在回转窑前端,煤粉挥发分与焦炭燃烧速度加快,整体温度有所提升,最高温度由2386 K增至2427 K,壁面所接收的辐射量得到了提升;但NOx的生成量也大幅度提高,其中出口处NOx由247 mg/m3增至367 mg/m3。考虑到制氧成本问题及NOx排放问题,在二次风中进行富氧燃烧的总体效果不够理想。  相似文献   

14.
神华煤极易着火、燃尽,燃烧性能优良,且煤中氮、硫含量低,使神华煤在低氧和低氮结合的燃烧条件下,保持了较高的燃尽性能和较一般烟煤偏低的NOx生成量。神华煤的低硫特性保证了在贫氧(没有足够的氧气保证充分燃烧)条件下,炉内H2S含量不是太高,没有明显的高温腐蚀倾向。采用低氮燃烧后,燃烧器区燃烧强度降低,缓解了炉内结渣,部分锅炉屏区的结渣也有所缓解,提高了具有严重结渣倾向的神华煤的掺烧比例。神华煤采用低氧燃烧和低氮燃烧相结合的技术,保证了锅炉的燃烧经济性、安全性和低NOx生成特性,指标明显优于国内其他典型烟煤。  相似文献   

15.
High temperature air was adopted by combustion in high excess air ratio in a circulating fluidized bed. Experiments on pulverized coal combustion in high temperature air from the circulating fluidized bed were carried out in a down-fired combustor with the diameter of 220 mm and the height of 3000 mm. The NO emission decreases with increasing the residence time of pulverized coal in the reducing zone, and the NO emission increases with excess air ratio, furnace temperature, coal mean size and oxygen concentration in high temperature air. The results also revealed that the co-existing of air-staging combustion with high temperature air is very effective to reduce nitrogen oxide emission for pulverized coal combustion in the down-fired combustor.  相似文献   

16.
富氧燃烧技术在陶瓷窑炉中的应用分析   总被引:5,自引:1,他引:5  
对在陶瓷窑炉中富氧燃烧技术的应用展开了分析与评价.分析表明,随着氧浓度的增加,火焰温度呈非线性上升,CO2和H2O水蒸汽分子辐射力得到加强,热效率大幅提高,NOx生成则先快速上升而后快速下降;同时也对过剩空气系数、节能和窑炉结构进行了较为深入的分析.  相似文献   

17.
针对某公司150 t/h煤粉锅炉燃烧效率低、NOx排放浓度高、炉膛结焦等问题,提出了用富氧风作为炉顶燃尽风和贴壁风的分级燃烧新思路,采用计算机数值模拟技术和k-e- -g气相湍流燃烧模型及煤双挥发反应热解模型,对锅炉炉内速度场、温度场及燃烧过程中的NOx生成浓度进行数值模拟. 技术改造后锅炉的燃烧效率保持在96%以上,锅炉综合热效率在91.40%以上,NOx排放量为625~763 mg/m3,未发现炉膛水冷壁和高温过热器上有结渣现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号