共查询到17条相似文献,搜索用时 45 毫秒
1.
基于约瑟夫森量子电压标准设计了交流功率差分测量系统。通过分析差分采样系统的误差分布及误差传递函数,提出换向差分测量方法,减小了差分采样系统的增益误差,提高了电压幅值测量准确度;通过分析衰减系数η,证明了采用换向差分测量较容易实现10-7量级电压幅值测量。通过评估差分采样系统零相位,结果证明了差分采样系统具有较好的相位测量稳定性。分析了交流功率差分测量系统的不确定度分量,评估了功率因数为1.0,0.5 L和0.5 C时的功率测量不确定度,通过与国家交流功率基准装置进行实验比对,证明了基于约瑟夫森量子电压交流功率测量系统不确定度评估的合理性。 相似文献
3.
为了准确地测量和分析电力系统中的谐波参数,在分析了常用的几种谐波测量方法的基础上,提出了一种基于FFT数字倍频整周期采样的电力系统谐波参数的测量方法.研制了以高性能ARM Context-M3内核的STM32微处理器为核心的电力系统谐波检测仪.检测仪具有测量基波和各次谐波的电压、电流绝对值的功能,并且能够测得谐波含有率、功率因数、功率和基波频率等其他参数,实现了对电力系统谐波参数的实时监控. 相似文献
4.
5.
6.
7.
经典傅里叶变换要求采样数据必须布满整个周期。以周期非正弦波分析为例,提出一种利用规则分布的部分采样数据仍可进行傅里叶变换的新方法。以阶梯波为参考的差分测量用于周期非正弦波,在每个阶梯波台阶上丢弃起始和结束部分的采样以克服过渡过程和吉布斯现象后,高频分量的傅里叶变换将产生明显偏差。为克服这种偏差,将傅里叶变换的基函数(三角函数)作同样的离散,组成相应的影响矩阵,其逆矩阵将能恢复准确结果。由于影响矩阵的阶次是最高谐波次数的2倍,一般情况下求逆十分困难,并需要较大存储空间。提出了使影响矩阵成为稀疏因而简化运算的条件。进一步讨论了基于阶梯波的差分采样所需要的限幅条件在周期非正弦电压下的表现及其应对方法。模拟和演示实验结果表明,该方法可极大减少计算量,仍具有较高准确度。最后探讨了该方法扩展到一般采样缺失情况下的可能性。 相似文献
8.
已有声共振液位测量方法的量程受限于所获取的初始共振频率,这制约了此类方法在长距离测量中的应用。针对该问题,给出一种基于固定频段内共振频率的液位测量新方法。首先将检测初始共振频率变为检测较高频段内出现的一组共振频率。利用相邻共振频率的等差关系及共振频率液位换算公式得到多个测量值,将它们取平均后作为最终液位值,从而有效地降低测量不确定度。此外,提出的检测算法可以快速获取共振频率,增加了测量的实时性。最后,通过实验验证了所提方法量程更长,受液面泡沫、残渣等障碍物影响小,测量精度可达1‰,优于已有声共振测量方法以及一般超声波液位仪3‰~5‰的测量精度。 相似文献
9.
10.
11.
12.
13.
14.
15.
根据SNS型双路约瑟夫森结阵的驱动原理以及结阵分段特点,提出了平衡三进制驱动算法,实现了双路约瑟夫森结阵偏置状态的快速计算。根据约瑟夫森结阵的偏置状态以及组合方式,采用节点电压法,准确合成了双路阶梯波交流量子电压的台阶电压值,最终实现了最小分辨率为2个结,有效位为15位的交流量子电压输出。双路交流量子电压互测实验结果表明,合成交流量子电压的最大误差为0.06 μV,双路信号同步性测试实验中,两个通道的相位差为-0.01 μrad,证明了合成双路交流量子电压具有较高的幅值准确度和相位同步性。 相似文献
16.
脉冲驱动型交流量子电压标准ACJVS通过高速脉冲序列驱动约瑟夫森结阵芯片的方式实现宽频带交流量子电压的合成,相比于可编程型交流量子电压标准PJVS,具有免台阶切换、频谱纯净、频带宽等优点。搭建的系统主要包括8位高速脉冲码型发生器、微波放大器、直流阻断、约瑟夫森结阵芯片等。通过驱动包含4个子阵列,每个子阵列含12810个约瑟夫森结的结阵芯片,并结合4通道联合低频补偿的方式,成功产生了1V有效值的脉冲驱动型交流量子电压,为进一步建立交流量子电压基准打下了坚实的基础。最后,展望了脉冲驱动型交流量子电压在量子阻抗桥、交流量子功率源、交流量子功率表方面的应用价值。 相似文献
17.
1954年Zin E和Forger K成功研究出互感器串并联电压加法线路;1988年国家高电压计量站成功研究出互感器双边串联电压加法线路,2006年使用串联型电压互感器进行双边电压加法,2008年试验电压达到1 000/■kV,电压比不确定度不大于4×10-5(P=95%)。要进一步减小电压比的不确定度,需要最大限度地消除串联型电压互感器的屏蔽误差以及邻近干扰误差。除了设计电磁屏蔽更完善的串联型电压互感器外,还可以使用三端口网络理论实施电压加法,通过三端口网络的响应叠加性,使得在加法过程中的屏蔽误差和邻近干扰误差很大程度上得到补偿。2013年使用广东电网电力科学研究院的500 kV工频电压比例自校系统装置进行了验证试验。与1988年数据相比,110/■kV电压下的屏蔽误差从18×10-6减小到1.5×10-6,与2006年数据相比,500/■kV电压比例不确定度从15×10-6减小到7×10-6(P=95%)。 相似文献