首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
薛允连 《广州化工》1992,20(4):56-58
锅炉结焦是燃煤工业锅炉运行中比较普遍的现象。它会破坏正常燃烧工况,减少锅炉出汽力;破坏正常水循环,造成爆管事故;严重时还会使炉腔出口堵塞而被迫停炉。一、结焦的原因1.煤质煤在燃烧时,其灰分熔融特性温度用变形温度t_1、软化温度t_2和熔化温度t_3数值表示。  相似文献   

2.
针对准东煤燃烧过程中存在的结渣问题,采用浮沉法将准东原煤分成不同密度子样,测定了各密度级别灰样的化学组成、矿物组成、煤灰熔融温度和烧结温度,探索准东煤灰微观不均匀熔融规律,揭示准东燃烧结渣机理。结果表明,准东煤粉主要分布在1.40~1.50 g/cm3。煤粉密度从1.50g/cm3升至1.60 g/cm3时,煤灰中SiO_2含量从28.82%提高至60.27%,CaO含量从29.91%降至3.96%,Fe_2O_3含量则从5.85%提高至12.68%,MgO含量从9.09%降至1.92%;软化温度从1 297℃降至1 127℃,烧结温度则从551℃升高至1 000℃。不同密度煤粉颗粒中化学组成和矿物组成的分化导致灰熔融性的不均匀分布,而其灰成分的特殊性导致了熔融温度和烧结温度变化趋势的差异。  相似文献   

3.
准东煤田是我国目前最大的整装煤田,煤质总体呈现中高水分、中高挥发分、低灰、低硫、低磷、中等热值、反应活性好等特点,是大规模煤化工、煤电气联产优质原料。但准东煤中较高的Na、Ca含量影响锅炉正常运行,限制了准东高钠煤的燃烧利用,目前电厂主要通过掺烧低钠煤方式加以利用。为考察准东煤及其混煤燃烧与结渣特性,在五彩湾电厂采集了准东煤(ZD)和乌东煤(WD)等2种原料煤。采用热重分析仪研究30%、50%和80%等不同配比下混煤燃烧特性,并分析响应配比下煤灰特性变化规律。结果表明,准东煤混煤燃烧的DTG曲线有2个特征峰。随准东煤配比增加,混煤燃烧TG和DTG曲线向低温区移动,DTG曲线特征峰更明显;混煤燃烧特征温度逐渐降低,最大燃烧速率与综合燃烧特性指数先降低后升高,混煤灰熔融温度逐渐降低。准东煤相对乌东煤具有较高的碱性氧化物和较低的酸性氧化物含量,准东煤配比越高相应的SO_3、CaO、Na_2O的含量越高结渣倾向性更强。但部分指标并不能准确预测结渣强弱,如准东煤硅铝比为1.67,而乌东煤硅铝比为3.02,依据硅铝比判断结渣倾向性与事实不吻合。另外,煤中CaO含量大于30%后继续增加则灰熔融温度升高,是准东煤比乌东煤具有更高灰熔融温度的原因,随准东煤配比增加,混煤灰熔融温度呈明显降低趋势。燃烧结渣与沾污倾向指标主要有基于煤灰成分和基于煤灰熔融温度的指标,总结分析以往结渣与沾污预测指标结合试验结果认为:基于煤灰成分的碱酸比以及基于煤灰熔融温度的特征温度差值(FT-DT)是判别准东煤及其混煤结渣与沾污倾向性的理想指标。  相似文献   

4.
灰熔融性是判别结渣的主要依据之一,但部分准东煤灰熔融温度高,仍具有严重结渣倾向。为了分析准东煤灰熔融性与结渣倾向不吻合的原因,采用煤质数据对比分析法,研究了准东煤灰熔融性与煤灰成分的相关性,说明部分准东煤灰熔融性高主要是煤灰中碱性氧化物含量高引起,得出了准东煤的软化温度与煤灰中的碱性氧化物成分相关性较好,可用碱性氧化物含量/(碱性氧化物含量+酸性氧化物含量)或者当量碱性氧化物含量进行灰熔融性的初步判别,可为准东高钠煤的灰熔融性检测、锅炉设计及电厂的安全燃用提供参考和依据。  相似文献   

5.
王文  田松柏 《大氮肥》2022,45(2):86-88
介绍煤种改变后,煤粉锅炉结焦的情况,通过调整配煤比例,确认了低灰熔点的原料煤是引起锅炉结焦的主要原因,同时制定了相应的预防措施,提高了煤种调整后锅炉运行的安全性和经济性.  相似文献   

6.
沾污结渣是富氧燃烧锅炉运行的主要问题之一,由于CO2和N2辐射传热和化学性质的差异,富氧锅炉内壁沾污结渣情况更加严重。近年来学者针对富氧情况下煤灰的沾污结渣情况进行了系统分析,得出了较为详实的结果,但仍缺乏富氧情况下基于煤灰内特征元素和气氛对于煤粉燃烧成灰的相关研究。选取煤粉结渣中的关键元素Ca、Na、Fe作为特征元素,选取特征元素的氧化物或氢氧化物作为添加剂,选取灰成分以Al、Si为主的山西无烟煤作为试验煤样,定量研究富氧情况下特征元素对于煤粉高温成灰特性的影响。结果表明,特征元素含量较高时,相比较空气气氛,富氧气氛下煤粉的反应时长减少20~50 min,且随氧气浓度增大,煤粉反应时长逐渐增加;高Fe煤和高Na煤的灰熔融温度比基准煤降低了150℃左右,但Ca对于煤灰的变形温度影响不明显;富氧情况下,高Ca煤中随着氧气浓度升高,出现钙硅铝酸盐和莫来石晶相,随温度升高,钙长石等硅铝酸盐生成,Na、Fe等元素非晶相化加强;高Fe煤中Fe随着氧气浓度升高从氧化物向硅铝酸铁转变,随温度升高,顽火辉石与磁铁矿含量升高,钙铁硅氧化物含量先增加后减少;高Na煤得到的低氧煤灰Na主要以霞石成分存在,氧气浓度升高导致其逐渐转化形成硅酸钠盐;随温度升高,Na的形态会从稳定的酸式盐向硅酸钠盐或其他稳定非晶体转变。  相似文献   

7.
针对易结渣煤种,研究不同配煤方式对煤灰熔融特性的影响,在催化气化工况气氛下利用压差法烧结温度测定实验装置对各煤灰进行初始烧结温度测试,并结合X射线衍射(XRD)及Factsage热力学软件计算结果表征分析煤灰的相关物理和化学变化,推测灰中矿物质间的反应及矿物的转变,研究矿物质变迁规律,揭示缓解结渣机理。结果表明,通过将高灰熔点、高硅铝含量煤种同易结渣煤种混配可缓解易结渣煤种的结渣问题,同高灰熔点煤混合可有效提高易结渣煤种灰熔点;混煤工艺不同,对灰熔点及烧结温度影响各异,这主要与催化剂在煤质上分布、催化剂存在形式不同及其与不同煤种中矿物质作用不一有关。  相似文献   

8.
对某新建电厂拟用煤种的煤质特性进行了分析,发现设计煤种、校核煤种Mt都超过了31%,采用煤粉炉炉型时,选择中速磨制粉系统应特别慎重;设计煤种具有轻微结渣、中度沾污倾向,校核煤种具有严重结渣、高度沾污倾向,设计、校核煤种分别属于中等结渣和易结渣煤种;设计、校核煤种属低挥发分褐煤,热值均较低。以煤质特性为基础,从燃料水分、灰渣特性、挥发分和发热量、煤灰CaO含量等方面对电厂锅炉炉型进行了选择。结果表明:与煤粉炉相比,循环流化床(CFB)锅炉对煤种适应性更强,可大幅降低燃用煤种的结焦风险,且低负荷稳燃特性良好;CFB锅炉+干法脱硫除尘一体化的布置方式可充分利用灰中CaO,节约脱硫用石灰石耗量,降低投资。最后通过对CFB锅炉的优势分析,说明其具有燃料适应性好、负荷调节范围广、清洁高效燃烧和运行周期长等优点,对于设计、校核煤种来说,CFB锅炉是更好的选择。  相似文献   

9.
为研究不同煤种在的煤粉工业锅炉上的适应性,笔者分别选取神木煤、山东本地煤、兰炭三种燃料在济南某热源厂70 MW燃煤锅炉上开展试验研究,考察了不同煤种的燃烧性能对工业锅炉运行状况的影响,分析锅炉长时间持续运行时点火稳定性、炉膛温度、SCR入口烟温、排烟温度以NOx初始排放变化趋势,结果表明,不同煤种的点火稳定性差异不大,均具有较好的点火性能。当锅炉满负荷运行时,本地煤种排烟温度比神木煤高20℃左右,NOx初始排放比神木煤低10%,兰炭燃烧炉膛温度比神府煤高10%左右,NOx初始排放在250~350 mg·Nm-3,比神木煤低30%。  相似文献   

10.
混煤燃烧过程中矿物质的形态变化及相变   总被引:7,自引:1,他引:6       下载免费PDF全文
引 言炉内受热面结渣被认为是电站锅炉中最难以处理的一个问题 ,特别在我国长时间内煤粉锅炉作为主要的能源供应手段 .近年来 ,国内有许多电站采用混煤燃烧的方法以适应不同的要求 ,如减少结渣和SOx 的排放 .然而 ,实际上如果混煤中设计使用的煤和实际使用的煤特性不一样 ,混煤燃烧可能会导致严重的结渣 .对单一煤种燃烧过程中的矿物质行为已经有了广泛研究[1~ 4 ] ,但对混煤很少有研究[5,6] .本文主要研究混煤燃烧后矿物质行为特性的变化 ,并用XRD分析矿物质形态随温度的变化 ,从矿物学的观点来解释混合煤灰熔融特性 ,以揭示混煤结…  相似文献   

11.
为了给煤粉锅炉用户提供煤粉优选理论依据,以煤粉锅炉主要用煤神府煤制备的煤粉为研究对象,采用TG-DTG对煤粉的燃烧特性进行研究,分析了不同煤粉及升温速率对煤粉燃烧特性的影响。结果表明:在空气气氛下,升温速率提高,TG、DTG曲线向高温方向移动,煤粉的着火温度升高,最大质量变化速率增大,最大失重温度提高,燃尽指数增大;随着灰分和粒径改变,升温速率为10或20℃/min时,煤粉的着火温度变化不显著,燃尽指数及综合燃烧特性指数均有影响。灰分减小,粒径不变时,D煤粉的综合燃烧指数为1.51,优于粒径74μm、灰分9.5%的P煤粉。  相似文献   

12.
Ash with a low melting point causes slagging and fouling problems in pulverized coal combustion boilers. Ash deposition on heat exchanger tubes reduces the overall heat transfer coefficient due to its low thermal conductivity. The purpose of this study is to evaluate the ash deposition for Upgraded Brown Coal (UBC) and bituminous coal in a 145 MW practical coal combustion boiler. The UBC stands for Upgraded Brown Coal. The melting temperature of UBC ash is relatively lower than that of bituminous coal ashes. Combustion tests were conducted on blended coal consisting 20 wt.% of UBC and 80 wt.% of bituminous coal. Before actual ash deposition tests, the molten slag fractions in those coal ashes were estimated by means of chemical equilibrium calculations. The calculation results showed the molten slag fraction for UBC ash reached approximately 90% at 1523 K. However, that for blended coal ash decreased to 50%. These calculation results mean that blending UBC with bituminous coal played a role in decreasing the molten slag fraction. This phenomenon occurred because the coal blending led to the formation of alumino-silicates compounds as a solid phase. Next, ash deposition tests were conducted using a practical pulverized coal combustion boiler. A water-cooled stainless-steel tube was inserted in locations at both 1523 K and 1273 K in the boiler to measure the amount of ash deposits. The results showed that the mass of ash deposition for blended coal did not greatly increase, compared with that for bituminous coal alone. Therefore, appropriately blending UBC with bituminous coal enabled the use of UBC without any ash deposition problems in practical boilers.  相似文献   

13.
中国新疆准东煤具有储量巨大、开采成本低、挥发分高、硫含量低等特点,是优质的动力用煤。但准东煤钠含量高,燃烧利用时易在受热面上形成烧结性积灰,产生严重的结渣,极大限制了高钠煤的开发利用。因此,要实现高钠煤的清洁高效利用,需充分认识高钠煤灰的烧结特性。总结了高钠煤积灰结渣机理,概述了高钠煤灰烧结机制,探讨了二者之间的内在关联。高钠煤在燃烧过程中,煤中碱金属(主要为钠)释放并以Na_2SO_4、NaCl及Na的形式存在于烟气中,与受热面接触并于其上冷凝形成黏性内白层,内白层捕获飞灰颗粒后反应生成低熔点化合物,其烧结温度降低,使锅炉受热面上发生沾污增强型的"沾污烧结"过程。高钠煤灰的烧结过程包含固相烧结、液相烧结和气相烧结3种方式,对煤灰烧结过程的影响因素包括反应温度、化学组成、煤灰粒径、反应气氛、添加剂种类、锅炉设计和锅炉运行工况等。其中添加剂按氧化物种类可分为碱性氧化物和酸性氧化物,一般情况下碱性氧化物可以降低煤灰烧结温度,酸性氧化物可提高煤灰烧结温度。未来对于提高高钠煤灰烧结温度的研究方向可从新型添加剂出发,找到既能固定烟气中的钠,又能与灰渣中的低熔点含钠矿物质反应生成高熔点化合物的单一或混合成分的添加剂。同时,关于钠蒸气对积灰结渣在微观层面上的动态特性的影响机制也需进一步研究。概述了煤灰烧结温度的测量方法,热导率分析法、压力测量法、热机械分析法、筛分法和压降法,其中压降法是目前为止测量烧结温度较为准确的方法。介绍了上海理工大学碳基燃料洁净转化实验室在高钠煤灰烧结特性方面的研究方向,以期为解决燃用高钠煤锅炉积灰结渣问题提供参考。  相似文献   

14.
李晓航  刘红刚  路建洲  滕阳  张锴 《化工学报》2019,70(11):4397-4409
在固定床吸附反应器内对两台300MW等级燃煤发电机组循环流化床锅炉和煤粉锅炉飞灰样品进行气相零价汞吸附实验,通过改变实验工况研究温度、入口汞浓度和入口气体流量对飞灰汞吸附能力的影响。采用颗粒内扩散模型、准一阶和准二阶动力学模型、耶洛维奇(Elovich)模型对实验数据分别进行拟合,从动力学的角度探讨两种锅炉飞灰对气相零价汞吸附的影响机制以及两种锅炉飞灰与气相零价汞之间吸附动力学行为差异。结果表明:相同工况下循环流化床锅炉飞灰汞吸附过程的穿透时间和平衡吸附量远大于煤粉锅炉飞灰。吸附温度为150℃时,两种锅炉飞灰对气相零价汞的平衡吸附量最大。由于外扩散阻力随气体入口流量的增加而减小,入口汞浓度的增加可提高传质推动力,飞灰对汞的吸附得以增强。动力学分析表明飞灰的零价汞吸附由外扩散、内扩散和表面化学吸附共同控制,其中表面化学吸附是该吸附过程中的控制步骤;准二阶动力学模型和Elovich动力学模型更适合于描述该吸附过程。相同实验条件下,循环流化床锅炉飞灰吸附过程拟合所得的颗粒内扩散系数、准一阶动力学常数和初始吸附速率均大于煤粉锅炉飞灰。  相似文献   

15.
不同类型燃煤工业锅炉具有各自的技术优势及应用范围,为了给用户在项目立项、选择锅炉时提供正确参考,阐述了3种主流燃煤工业锅炉的技术特点、应用现状,并着重针对循环流化床锅炉和现代煤粉工业锅炉,从燃烧组织方式和技术特点两方面进行了系统的技术对比分析。经分析认为,流态化燃烧组织是循环流化床锅炉的技术基础,浓相室燃燃烧组织是现代煤粉工业锅炉的技术基础。依托密相床炉料的巨大热容量,循环流化床锅炉定位于处理高灰劣质燃料;依托低变质高活性清洁煤粉快响应着火喷燃,现代煤粉工业锅炉定位于油(气)锅炉的备份及互换。因此,二者非取舍而是互为补充的关系。  相似文献   

16.
通过对焦作无烟煤、山西河津瘦煤、山西洪洞1/3焦煤、济源焦煤、陕西榆林长焰煤五种煤样的结渣特性、煤灰成分、煤灰灰熔点的测定,运用指数判别法研究了煤的结渣特性.研究表明,影响煤结渣特性的因素很多,其中煤质特性是主要因素,对电站锅炉的安全经济运行具有重要意义.  相似文献   

17.
煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响   总被引:2,自引:0,他引:2  
李晓航  刘芸  苏银皎  滕阳  关彦军  张锴 《化工学报》2019,70(3):1075-1082
通过分析两台容量相近的循环流化床锅炉和煤粉锅炉飞灰样品的粒径分布、表面结构特性、未燃尽碳含量、反应性和汞含量,探究两种类型锅炉飞灰特性差异及其与飞灰汞吸附能力的关系。结果表明:循环流化床和煤粉锅炉尾端除尘设备排灰口飞灰汞的含量分别为1584.0 ng/g和503.7 ng/g,其原因与飞灰粒径、未燃尽碳含量和表面特性相关。对于循环流化床锅炉,飞灰中汞含量随其粒径和反应性温度的减小而增加,随未燃尽碳含量增加而增加,且与比表面积和吸附量呈正相关关系。对于煤粉锅炉,粒径为75~53 μm的飞灰对汞吸附能力较强,未燃尽碳含量明显小于循环流化床所产生飞灰的含量,飞灰比表面积随粒径变化不大,由此导致煤粉锅炉除尘设备排灰口所取样品对汞的吸附能力远低于循环流化床锅炉相对应位置飞灰对汞的吸附能力。  相似文献   

18.
A.K. Moza  L.G. Austin 《Fuel》1983,62(12):1468-1473
A computer controlled scanning electron microscope fitted with soft X-ray fluorescence analysed thousands of pulverized coal particles in the size range 10 to 100 μm for amounts of Al, Si, Ca, S and Fe in each of the particles. Two coals were used, namely, subbituminous C, Comanche-Wyoming and subbituminous B, Rosebud-Montana. In pulverized coal combustion Rosebud coal has a bad slagging record not predictable from conventional slagging indices based on the elemental analyses of the total coal ash. The coal particles were placed into one of four groups: little mineral matter; low melting point inorganic composition; high melting point compositions; and large amounts of iron or pyrite. On this basis, Rosebud coal had 47% of its mineral matter in groups likely to cause slagging compared with 12% for Comanche coal, in agreement with the slagging record. It is concluded that although the particle-by-particle analysis technique used here is in a crude state of development, it can give a correct indication of the possible slagging behaviour of a pulverized coal in cases where conventional slagging indices based on the analysis of the total mean coal ash fail to give the correct indication.  相似文献   

19.
中国煤粉工业锅炉借鉴油气锅炉和德国煤粉工业锅炉技术理念,经历立项研发、中试验证和工业示范,系统技术逐步成熟,自2010年起,实现规模化工业应用。煤粉工业锅炉系统具有高热效率、低烟气污染物排放等优点,有效带动了燃煤工业锅炉产业发展。笔者论述了煤粉工业锅炉技术与发展,重点介绍了煤粉工业锅炉的关键技术,并对主要技术进行对比,分析了煤粉工业锅炉的工业应用情况,最后提出了煤粉工业锅炉技术发展方向。煤粉工业锅炉系统由燃料煤粉生产、储供、油气点火、燃烧、锅炉本体、烟气净化以及自动化控制等系统构成。锅炉热效率大于91%,烟气污染物达到国家超低排放标准,系统技术符合国家煤炭清洁利用方向。燃料煤粉生产采用一步法工艺,通过强化流动性和安全措施,现可实现最大为1 000 m^3安全存储量。锅炉供粉采用气动活化、无脉动给料及高速引射流浓相输送技术,已实现输送阻力低于20 kPa,粉风固气比大于2.5 kg/m^3,供料精度在±3.0%以内,最大供料量为5 t/h的浓相供料技术与装备,广泛应用于锅炉供料系统。供料量在2.5 t/h,供料精度在±2.0%和±1.0%以内的第三代和第四代供料器也分别开展了工业验证和样机的试制工作,并取得了阶段性的成果。煤粉燃烧器采用逆喷式回流式结构,设计工作依据其结构特征,通过模拟气流扩展角、回流区域范围、回流量、旋流强度以及温度和速度场等研究开展,再经过实际工程应用,进一步验证优化设计参数,最终实现燃烧器的逐级放大。天然气/煤粉双燃料燃烧器具有便捷切换和快速着火功能。风冷燃烧器采用内外双级旋流供风燃烧技术,具有点火迅速、燃烧稳定、燃烧效率高和初始NOx排放低等优点。随着煤粉锅炉系统测控技术向智能化、网络化和集成化方向发展。锅炉烟气脱硫除尘采用NGD高倍率灰钙循环脱硫技术,具有占地小,运行成本低等特点,在低钙硫摩尔比下,系统脱硫和除尘效率分别达到90%和99.95%以上。低温炭基预氧化脱硝耦合NGD协同烟气净化技术具有工艺简单,耗水少,废物资源再利用,无二次污染产生等优点,更加适合于煤粉工业锅炉的烟气净化。煤粉工业锅炉在发展历程中通过关键技术和装备优化升级,在大型化、模块化和系列化方向已取得成效,在节能性、环保性和经济性等方面较常规工业锅炉具有显著优势,技术已达到世界先进水平。未来随着国家能源结构优化,天然气/煤粉锅炉、低氮燃烧、生物质复合半焦粉及协同化烟气净化等技术的开发与成熟,煤粉工业锅炉技术将成为煤炭清洁燃烧利用主要技术之一。  相似文献   

20.
煤粉炉掺烧生活垃圾对灰渣特性的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用小试规模煤粉炉,研究掺烧不同比例生活垃圾对燃煤灰渣特性的影响,主要包括飞灰元素组成、飞灰粒径分布、飞灰形貌、灰熔点和结渣特性等影响变化研究。结果表明,随着生活垃圾掺烧比例的增加,灰分中Ca、Fe、Cl和S元素含量增加,Al、Mg、K、Na、Ti和Si含量降低,飞灰球形颗粒分布减少,层状堆积结构增多;灰渣熔融特征温度呈平缓下降趋势,但变化范围小于2%,影响较小;掺烧量为25%时,飞灰表面发现少量褐色大颗粒。总之,生活垃圾掺烧对燃煤灰渣特性影响很小,该结果为实际煤粉炉开展掺烧生活垃圾试验提供了一定理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号