共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile method of connecting fluorescent meso‐tetrakis(4‐sulfonatophenyl)porphine tetranion nanotubes to polyelectrolyte capsules is developed. Heat‐sensitive robust polyelectrolyte capsules consisting of poly(diallyldimethylammonium chloride) and poly(styrene sulfonate) multilayers have been fabricated using the conventional layer‐by‐layer technique. Supramolecular aggregation of porphyrin monomers to nanotubes is induced in the microenvironment of the capsules by sequential addition of salt and acid. Scanning electron microscopy, transmission electron microscopy, and atomic force microscopy images reveal satellite‐like structures consisting of a central capsule core with porphyrin nanotubes emerging radially from the capsule walls. The growth and the distribution of the porphyrin units have been monitored by UV‐vis spectroscopy, fluorescence spectroscopy, and confocal laser scanning microscopy. Changing the temperature alters the dimensions and the arrangement of the nanotubes on the capsule walls. Such an attachment of porphyrin tubes onto robust functional capsules should help in developing an artificial light‐harvesting system. 相似文献
2.
C. Picart R. Elkaim L. Richert F. Audoin Y. Arntz M. DaSilvaCardoso P. Schaaf J.‐C. Voegel B. Frisch 《Advanced functional materials》2005,15(1):83-94
Polyelectrolyte multilayers (PEMs) are now widely used for biomedical applications. In this work, we investigated the primary osteoblast adhesion properties of PEMs of poly(L ‐lysine) (PLL), poly(L ‐glutamic acid) (PGA), poly(alginic acid) (Palg), and poly(galacturonic acid) (Pgal). In order to compensate for the poor adhesion of the as‐synthesized films, two kinds of film modifications were achieved: a purely physical modification by film crosslinking, and a chemical modification by grafting a arginine–glycine–aspartic acid (RGD) peptide to PGA. Crosslinking was performed using a water‐soluble carbodiimide in combination with N‐hydroxysulfosuccinimide (sulfo‐NHS) to induce amide formation. This reaction was followed by Fourier‐transform IR spectroscopy. For film functionalization, a 15‐amino‐acid peptide was grafted to PGA and deposited as the top layer of the film. PLL/PGA, PLL/Palg, and PLL/Pgal films were crosslinked or functionalized. The films were tested for both short‐term adhesion properties and long‐term proliferation of primary osteoblasts. Whereas the effect of film crosslinking on short‐term adhesion was moderate, it was much more important for the RGD‐functionalized films. On the other hand, the long‐term proliferation was the same or even higher for the crosslinked films as compared with the functionalized films. This effect was particularly enhanced for the PLL/Palg and PLL/Pgal films. Finally, we functionalized PLL/PGA that had been crosslinked prior to PGA‐RGD deposition. These architectures exhibited even higher short‐term adhesion and proliferation. These results clearly show the important role of the physical properties of the films, besides their chemical properties, for the modulation of primary cell‐adhesion behavior. 相似文献
3.
N. Benkirane‐Jessel P. Lavalle E. Hübsch V. Holl B. Senger Y. Haïkel J.‐C. Voegel J. Ogier P. Schaaf 《Advanced functional materials》2005,15(4):648-654
This article demonstrates the tuning of the biological activity of a surface functionalized by a polyelectrolyte multilayer. The interaction of protein A with macrophages is used as the model system. The film consists of two polypeptides, poly(lysine) and poly(glutamic acid); each “build‐up” solution is a mixture of the respective D ‐ and L ‐enantiomers (d and l enantiomers). Cells are deposited on top of the film, and they produce tumor necrosis factor alpha (TNF‐α) as they come into contact with the protein. Depending upon the d/l‐enantiomer ratio of the polyelectrolyte solutions used for the film build‐up, and the embedding depth of the protein, the production of TNF‐α commences after a varying induction time and displays a transition from no‐production to full‐production, which takes place over a period of time that depends on the film's composition and embedding depth. Thus, it is shown that by changing these two parameters the timing of the protein's activity can be accurately tuned. 相似文献
4.
A straightforward method to synthesize quasi‐monodisperse gold microspheres from a commercial gold plating solution is reported. The size and the surface roughness of the obtained particles can easily be tuned. In particular, raspberry‐like particles with a high active surface area are obtained. The microspheres are assembled on indium tin oxide (ITO) electrodes using the layer‐by‐layer technique and the overall electroactive surface area is increased, as characterized by cyclic voltammetry. The as‐prepared products were characterized by scanning electron microscopy (SEM), powder X‐ray diffraction (XRD), cyclic voltammetry, and light microscopy. 相似文献
5.
G. Mehta M. J. Kiel J. W. Lee N. Kotov J. J. Linderman S. Takayama 《Advanced functional materials》2007,17(15):2701-2709
Poly(dimethylsiloxane) (PDMS) microbioreactors with computerized perfusion controls would be useful for engineering the bone marrow microenvironment. However, previous efforts to grow primary bone marrow cells on PDMS substrates have not been successful due to the weak attachment of cells to the PDMS surface even with adsorption of cell adhesive proteins such as collagen or fibronectin. In this work, modification of the surface of PDMS with biofunctional multilayer coatings is shown to promote marrow cell attachment and spreading. An automated microfluidic perfusion system is used to create multiple types of polyelectrolyte nanoscale coatings simultaneously in multiple channels based on layer‐by‐layer deposition of PDDA (poly(diallyldimethyl ammonium chloride)), clay, type IV collagen and fibronectin. Adherent primary bone marrow cells attached and spread best on a surface with composition of (PDDA/clay)5 (Collagen/Fibronectin)2 with negatively charged fibronectin exposed on the top, remaining well spread and proliferating for at least two weeks. Compared to traditional more macroscopic layer‐by‐layer methods, this microfluidic nanocomposite process has advantages of greater flow control, automatic processing, multiplexed fabrication, and use of lesser amounts of polymers and protein solutions. 相似文献
6.
A bilayer of a hydrophobically modified polyelectrolyte, octadecyl poly(acrylamide) (PAAm), sandwiched between the layers of a hydrophilic polyelectrolyte, poly(ethyleneimine) (PEI), is prepared by the sequential electrostatic–hydrophobic–electrostatic‐interaction‐driven self‐assembly on planar and colloid substrates. This process results in a PEI/[PAAm]2/PEI‐multilayer‐coated substrate. The removal of a PAA/PEI/[PAAm]2/PEI‐multilayer‐coated decomposable colloidal template produces hollow capsules. Irregular hydrophobic domains of the [PAAm]2 bilayer in the PEI/[PAAm]2/PEI‐multilayer capsule are infiltrated with a lipid to obtain a uniform, distinct hydrophobic layer, imparting the capsule with a pseudobilayer vesicle structure. 相似文献
7.
The first study of ion transport across self‐assembled multilayered films of p‐sulfonato‐calix[n]arenes and poly(vinyl amine) (PVA) is presented. The films are prepared by the alternate electrostatic layer‐by‐layer assembly of the anionic calixarenes and cationic PVA on porous polyacrylonitrile (PAN) supports. We use tetra‐p‐sulfonato‐calix[4]arene (calix4), hexa‐p‐sulfonato‐calix[6]arene (calix6), and octa‐p‐sulfonato‐calix[8]arene (calix8) as the calixarenes. Ultraviolet (UV) studies indicate that dipping solutions of pH 6.8, without a supporting electrolyte, are most suited for film preparation. Calix8 is adsorbed in higher concentrations per layer than calix6 or calix4, probably because desorption is less pronounced. The permeation rates, PRs, of monovalent alkali‐metal chlorides (Li, Na, K, Cs), magnesium chloride, divalent transition‐metal chlorides (Ni, Cu, Zn), trivalent lanthanide chlorides (La, Ce, Pr, Sm), and sodium sulfate across the calix4/PVA, calix6/PVA, and calix8/PVA membranes are studied and compared with the corresponding PR values across a poly(styrene sulfonate) (PSS)/PVA multilayer membrane prepared under the same conditions. The PR values of the alkali‐metal salts are between 4 and 17 × 10–6 cm s–1, those of magnesium chloride and the transition‐metal salts are 0.2–1.3 × 10–6 cm s–1, and those of the lanthanide salts are about 0.1 × 10–6 cm s–1. Possible origins for the large differences are discussed. Ion transport is first of all controlled by electrostatic effects such as Donnan rejection of di‐ and trivalent ions in the membrane, but metal‐ion complexation with the calixarene derivatives also plays a role. Complexation occurs especially between Li+ or Na+ and calix4, Mg2+, or Cu2+ and calix6, Cu2+, Zn2+, or the lanthanide ions and calix8. Divalent sulfate ions are found to replace the calixarene polyanions in the membrane. UV studies of the permeate solutions indicate that calix4 especially is displaced during sulfate permeation. 相似文献
8.
The ability to reliably engineer surfaces with nanoscale precision is a rapidly developing field of research with applications ranging from biosensing and biomedical materials to antifouling and corrosion protection. The layer‐by‐layer (LbL) approach is a widely utilized method for engineering surfaces, in part because of the large array of polymeric materials that can be integrated and the diverse range of functionality that these materials afford. Herein, we discuss the LbL deposition of multicomponent ‘blend' solutions to form polyelectrolyte blend multilayer films and coatings. This approach is a versatile platform for enhancing film stability, incorporating a wide range of functional materials, controlling film morphology and material properties, and increasing biological response, thereby expanding the range of potential applications. 相似文献
9.
M. Dimitrova Y. Arntz P. Lavalle F. Meyer M. Wolf C. Schuster Y. Haïkel J.‐C. Voegel J. Ogier 《Advanced functional materials》2007,17(2):233-245
The alternate layer‐by‐layer (LBL) deposition of polycations and polyanions for the build up of multilayered polyelectrolyte films is an original approach that allows the preparation of tunable, biologically active surfaces. The resulting supramolecular nanoarchitectures can be functionalized with drugs, peptides, and proteins, or DNA molecules that are able to transfect cells in vitro. We monitor, for the first time, the embedding of a bioactive adenoviral (Ad) vector in multilayered polyelectrolyte films. Ad efficiently adsorbs on poly(L ‐lysine)–poly(L ‐glutamic acid) (PLL–PGA), PLL–HA (HA: hyaluronan), poly(allylamin hydrochloride)–poly(sodium‐4‐styrenesulfonate) (PAH–PSS), and CHI–HA (CHI: chitosan) films; it preserves its transduction capacity (which can reach 95 %) for a large number of cell types, and also allows vector uptake into receptor‐deficient cells, thus abrogating the restricted tropism of Ad. 相似文献
10.
All fuel cells utilizing the membrane‐electrode assembly have their ion‐conductive membrane sandwiched between bipolar plates. Unfortunately, applying conventional techniques to isolated polyelectrolyte membranes is challenging and difficult. A more practical alternative is to use the layer‐by‐layer assembly technique to fabricate a membrane‐electrode assembly that is technologically relatively simple, economic, and robust. The process presented here paves the way to fabricate ion‐conductive membranes tailored for optimum performance in terms of controlled thickness, structural morphology, and catalyst loading. Composite membranes are constructed through the layered assembly of ionically conductive multilayer thin films atop a porous polycarbonate membrane. Under ambient conditions, a fuel cell using a poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) composite membrane delivers a maximum power density of 16.5 mW cm–2 at a relative humidity of 55 %, which is close to that of some commercial fuel cells operating under the same conditions. Further optimization of these systems may lead to new, ultrathin, flexible fuel cells for portable power and micropower applications. 相似文献
11.
R. Heuberger G. Sukhorukov J. Vrs M. Textor H. Mhwald 《Advanced functional materials》2005,15(3):357-366
Layers of the polyelectrolytes poly(allylamine hydrochloride) (PAH, polycationic) and poly(styrene sulfonate) (PSS, polyanionic) are consecutively adsorbed on flat silicon oxide surfaces, forming stable, ultrathin multilayer films. Subsequently, a final monolayer of the polycationic copolymer poly(L ‐lysine)‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) is adsorbed onto the PSS‐terminated multilayer in order to impart protein resistance to the surface. The growth of each of the polyelectrolyte layers and the protein resistance of the resulting [PAH/PPS]n(PLL‐g‐PEG) multilayer (n = 1–4) are followed quantitatively ex situ using X‐ray photoelectron spectroscopy and in situ using real‐time optical‐waveguide lightmode spectroscopy. In a second approach, the same type of [PAH/PSS]n(PLL‐g‐PEG) multilayer coatings are successfully formed on the surface of colloidal particles in order to produce surface‐functionalized, hollow microcapsules after dissolution of the core materials (melamine formaldehyde (MF) and poly(lactic acid) (PLA; colloid diameters: 1.2–20 μm). Microelectrophoresis and confocal laser scanning microscopy are used to study multilayer formation on the colloids and protein resistance of the final capsule. The quality of the PLL‐g‐PEG layer on the microcapsules depends on both the type of core material and the dissolution protocols used. The greatest protein resistance is achieved using PLA cores and coating the polyelectrolyte microcapsules with PLL‐g‐PEG after dissolution of the cores. Protein adsorption from full serum on [PAH/PPS]n(PLL‐g‐PEG) multilayers (on both flat substrates and microcapsules) decreases by three orders of magnitude in comparison to the standard [PAH/PPS]n layer. Finally, biofunctional capsules of the type [PAH/PPS]n(PLL‐g‐PEG/PEG‐biotin) (top copolymer layer with a fraction of the PEG chains end‐functionalized with biotin) are produced which allow for specific recognition and immobilization of controlled amounts of streptavidin at the surface of the capsules. Biofunctional multilayer films and capsules are believed to have a potential for future applications as novel platforms for biotechnological applications such as biosensors and carriers for targeted drug delivery. 相似文献
12.
N.B. Jessel P. Schwint R. Donohue P. Lavalle F. Boulmedais R. Darcy B. Szalontai J.‐C. Voegel J. Ogier 《Advanced functional materials》2004,14(10):963-969
Layer‐by‐layer self‐assembled polyelectrolyte films containing a charged cyclodextrin and lipopolysaccharide (LPS) are developed for the first time as a potential model for local endotoxin antagonist delivery. We have examined the biological activity of a lipopolysaccharide from E. coli incorporated into multilayered architectures made of poly‐(L ‐lysine) and poly‐(L ‐glutamic acid). Used in such build‐ups, a polycationic cyclodextrin, heptakis(6‐deoxy‐6‐pyridylamino)‐β‐cyclodextrin showed molecular chaperone properties by enabling restoration of the LPS biological activity whenever lost upon interaction with poly‐(L ‐lysine). 相似文献
13.
The layer‐by‐layer (LbL) desposition of oppositely charged polyelectrolytes from adsorption solutions of different ionic strength onto ~7 nm diameter carboxylic acid‐derivatized gold nanoparticles has been studied. The polyelectrolyte‐modified nanoparticles were characterized by UV‐vis spectrophotometry, microelectrophoresis, analytical ultracentrifugation, and transmission electron microscopy. UV‐vis data showed that the peak plasmon absorption wavelength of the gold nanoparticles red‐shifted after each adsorption step, and microelectrophoresis experiments revealed a reversal in the surface charge of the nanoparticles following deposition of each layer. These data are consistent with the formation of polyelectrolyte layers on the nanoparticles. Analytical ultracentrifugation showed an increase in mean nanoparticle diameter on adsorption of the polyelectrolytes, confirming the formation of gold‐core/polyelectrolyte‐shell nanoparticles. Transmission electron microscopy studies showed no signs of aggregation of the polyelectrolyte‐coated nanoparticles. The adsorption of the polyelectrolyte‐coated gold nanoparticles onto oppositely charged planar supports has also been examined. UV‐vis spectrophotometry and atomic force microscopy showed increased amounts of nanoparticles were adsorbed with increasing ionic strength of the nanoparticle dispersions. This allows control of the nanoparticle surface loading by varying the salt content in the nanoparticle dispersions used for adsorption. The LbL strategy used in this work is expected to be applicable to other nanoparticles (e.g., semiconductors, phosphors), thus providing a facile means for their controlled surface modification through polyelectrolyte nanolayering. Such nanoparticles are envisaged to have applications in the biomedical and bioanalytical fields, and to be useful building blocks for the creation of advanced nanoparticle‐based films. 相似文献
14.
Humidity‐Triggered Self‐Healing of Microporous Polyelectrolyte Multilayer Coatings for Hydrophobic Drug Delivery 下载免费PDF全文
Xia‐Chao Chen Ke‐Feng Ren Jia‐Hui Zhang Dan‐Dan Li Emily Zhao Zhong Jonathon Zhao Zhi‐Kang Xu Jian Ji 《Advanced functional materials》2015,25(48):7470-7477
Layer‐by‐layer (LbL) self‐assemblies have inherent potential as dynamic coatings because of the sensitivity of their building blocks to external stimuli. Here, humidity serves as a feasible trigger to activate the self‐healing of a microporous polyethylenimine/poly(acrylic acid) multilayer film. Microporous structures within the polyelectrolyte multilayer (PEM) film are created by acid treatment, followed by freeze‐drying to remove water. The self‐healing of these micropores can be triggered at 100% relative humidity, under which condition the mobility of the polyelectrolytes is activated. Based on this, a facile and versatile method is suggested for directly integrating hydrophobic drugs into PEM films for surface‐mediated drug delivery. The high porosity of microporous film enables the highest loading (≈303.5 μg cm?2 for a 15‐bilayered film) of triclosan to be a one‐shot process via wicking action and subsequent solvent removal, thus dramatically streamlining the processes and reducing complexities compared to the existing LbL strategies. The self‐healing of a drug‐loaded microporous PEM film significantly reduces the diffusion coefficient of triclosan, which is favorable for the long‐term sustained release of the drug. The dynamic properties of this polymeric coating provide great potential for its use as a delivery platform for hydrophobic drugs in a wide variety of biomedical applications. 相似文献
15.
Sumit Mehrotra Daniel Lynam Ryan Maloney Kendell M. Pawelec Mark H. Tuszynski Ilsoon Lee Christina Chan Jeffrey Sakamoto 《Advanced functional materials》2010,20(2):247-258
Axons of the adult central nervous system exhibit an extremely limited ability to regenerate after spinal cord injury. Experimentally generated patterns of axon growth are typically disorganized and randomly oriented. Support of linear axonal growth into spinal cord lesion sites has been demonstrated using arrays of uniaxial channels, templated with agarose hydrogel, and containing genetically engineered cells that secrete brain‐derived neurotrophic factor (BDNF). However, immobilizing neurotrophic factors secreting cells within a scaffold is relatively cumbersome, and alternative strategies are needed to provide sustained release of BDNF from templated agarose scaffolds. Existing methods of loading the drug or protein into hydrogels cannot provide sustained release from templated agarose hydrogels. Alternatively, here it is shown that pH‐responsive H‐bonded poly(ethylene glycol)(PEG)/poly(acrylic acid)(PAA)/protein hybrid layer‐by‐layer (LbL) thin films, when prepared over agarose, provided sustained release of protein under physiological conditions for more than four weeks. Lysozyme, a protein similar in size and isoelectric point to BDNF, is released from the multilayers on the agarose and is biologically active during the earlier time points, with decreasing activity at later time points. This is the first demonstration of month‐long sustained protein release from an agarose hydrogel, whereby the drug/protein is loaded separately from the agarose hydrogel fabrication process. 相似文献
16.
A new type of thin‐film electrode that does not utilize conducting polymers or traditional metal or chemical vapor deposition methods has been developed to create ultrathin flexible electrodes for fuel cells. Using the layer‐by‐layer (LbL) technique, carbon–polymer electrodes have been assembled from polyelectrolytes and stable carbon colloidal dispersions. Thin‐film LbL polyelectrolyte–carbon electrodes (LPCEs) have been successfully assembled atop both metallic and non‐metallic, porous and non‐porous substrates. These electrodes exhibit high electronic conductivities of 2–4 S cm–1, and their porous structure provides ionic conductivities in the range of 10–4 to 10–3 S cm–1. The electrodes show remarkable stability towards oxidizing, acidic, or delaminating basic solutions. In particular, an LPCE consisting of poly(diallyldimethyl ammonium chloride)/poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid)/carbon–platinum assembled on a porous stainless steel support yields an open‐circuit potential similar to that of a pure platinum electrode. With LbL carbon–polymer electrodes, the membrane‐electrode assembly (MEA) in a fuel cell can be made several times thinner, assume multiple geometries, and hence be more compact. The mechanism for LPCE deposition, electrode structure, and miniaturization will be presented and discussed, and demonstrations of the LbL electrodes in a traditional Nafion‐based proton fuel cell and the first demonstration of a thin‐film hydrogen–air “soft” fuel cell fully constructed using multilayer assembly are described. 相似文献
17.
Freely suspended nanocomposite layer‐by‐layer (LbL) nanomembranes composed of a central layer of gold nanoparticles sandwiched between polyelectrolyte multilayers are fabricated via spin‐assisted LbL assembly. The diameter of the circular membranes is varied from 150 to 600 μm and the thickness is kept within the range of 25–70 nm. The micro‐ and nanomechanical properties of these membranes are studied using a combination of resonance‐frequency and bulging tests, and point‐load nanodeflection experiments. Our results suggest that these freely suspended nanomembranes, with a Young's modulus of 5–10 GPa are very robust and can sustain multiple significant deformations. They are very sensitive to minor variations in pressure, surpassing ordinary semiconductor and metal membranes by three to four orders of magnitude and therefore have potential applications as pressure and acoustic microsensors. 相似文献
18.
Enhanced Electrochromism with Rapid Growth Layer‐by‐Layer Assembly of Polyelectrolyte Complexes 下载免费PDF全文
Mengqi Cui Wee Siang Ng Xu Wang Peter Darmawan Pooi See Lee 《Advanced functional materials》2015,25(3):401-408
In this work, a facile method to deposit fast growing electrochromic multilayer films with enhanced electrochemical properties using layer‐by‐layer (LbL) self‐assembly of complex polyelectrolyte is demonstrated. Two linear polymers, poly(acrylic acid) (PAA) and polyethylenimine (PEI), are used to formulate stable complexes under specific pH to prepare polyaniline (PANI)/PAA‐PEI multilayer films via LbL deposition. By introducing polymeric complexes as building blocks, [PANI/PAA‐PEI]n films grow much faster compared with [PANI/PAA]n films, which are deposited under the same condition. Unlike the compact [PANI/PAA]n films, [PANI/PAA‐PEI]n films exhibit porous structure that is beneficial to the electrochemical process and leads to improved electrochromic properties. An enhanced optical modulation of 30% is achieved with [PANI/PAA‐PEI]30 films at 630 nm compared with the lower optical modulation of 11% measured from [PANI/PAA]30 films. The switching time of [PANI/PAA‐PEI]30 films is only half of that of [PANI/PAA]30 films, which indicates a faster redox process. Utilizing polyelectrolyte complexes as building blocks is a promising approach to prepare fast growing LbL films for high performance electrochemical device applications. 相似文献
19.
Multilayer thin films of ~ 7 nm diameter gold nanoparticles (GNPs) linked with horse heart myoglobin (Mb) are fabricated, for the first time, by layer‐by‐layer (LbL) assembly on glass slides, and silicon and plastic substrates. The GNP/Mb nanocomposite films show sharp surface plasmon resonance (SPR) absorption bands that are used to follow the LbL growth of the film and to determine the kinetics of GNP adsorption on the Mb‐modified surface. The GNP/Mb nanocomposite films are characterized using atomic force microscopy, transmission electron microscopy, polarized UV‐vis spectroscopy, and spectroscopic ellipsometry. The GNPs in the multilayer films are spatially separated from one another, and interparticle interactions remain in the film, making it optically anisotropic. The GNP/Mb nanocomposite films are stable in air at temperatures up to 100 °C, and can withstand successive immersions in strongly acidic and basic solutions. The SPR absorption band of the GNP/Mb nanocomposite film in air exhibits a red‐shift in the wavelength maximum and an increase in the maximum absorbance relative to that in water. This result, which is in contrast to that observed with a GNP monolayer on an aminosilane‐functionalized substrate, suggests the shrinkage in air and swelling in water of Mb molecules embedded in the nanocomposite film. 相似文献
20.
B. G. De Geest C. Déjugnat M. Prevot G. B. Sukhorukov J. Demeester S. C. De Smedt 《Advanced functional materials》2007,17(4):531-537
This paper reports on microcapsules obtained by layer‐by‐layer deposition of bio‐polyelectrolyte multilayers at the surface of biodegradable dextran microgels. The behavior of the layer‐by‐layer coating upon degradation of the microgel core strongly depends on the bio‐polyelectrolytes used. Two types of microcapsules, “self‐rupturing” microcapsules and “hollow” microcapsules, are presented. Self‐rupturing microcapsules are obtained when the swelling pressure of the degrading microgel core is strong enough to rupture the surrounding bio‐polyelectrolyte membrane. Self‐rupturing microcapsules could be of interest as a pulsed drug delivery system. Hollow microcapsules are obtained after applying multiple layers of bio‐polyelectrolyte that can withstand the swelling pressure of the degrading microgel core. Biomacromolecules (such as albumin and dextran) spontaneously accumulate in the hollow microcapsules prepared from dex‐HEMA microgels, which could be of interest for drug‐encapsulation purposes. 相似文献