首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract— Novel biaxial retardation films made from photo‐induced deformed cholesteric liquid‐crystal (LC) nanostructures using reactive mesogen mixtures (RMMs) for a viewing‐angle compensation of vertically aligned liquid‐crystal displays (VA‐LCDs) was developed. The deformed cholesteric LC nanostructure has been observed by X‐ray‐diffraction (XRD) measurement. The birefringence of the film was described well by our optical model based on a form birefringence theory. The VA‐LCDs with photo‐induced biaxial cholesteric films have excellent viewing‐angle properties.  相似文献   

2.
Abstract— In‐cell retarders can be a major breakthrough for mobile LCDs. When a patterned in‐cell retarder replaces the external retarders on transflective LCDs, brighter and thinner transflective LCDs with lower power consumption and wider viewing angle can be obtained. Additionally, when in‐cell retarders are applied in reflective LCDs, the thickness of the LCD is considerably reduced without affecting the optical performance of the reflective LCD. This paper presents the technology needed to make in‐cell retarders and the performance of reflective and transflective LCDs with in‐cell retarders.  相似文献   

3.
Abstract— Polymer stabilization is introduced in VA‐type LCDs, and fast response time can be achieved along with a high contrast ratio.1 A small amount of reactive monomer is mixed with liquid crystal and forms a polymer layer above the alignment layer by using a UV process. The pre‐tilt angle of the liquid crystal is stabilized, and a faster response time can be realized when the bias pre‐tilt angle from 90° is increased. The properties of reactive monomers and liquid crystal and the conditions of the UV process were studied. Based on the application of the proper monomer and LC, and an optima UV process, a 65‐in. 240‐Hz full‐HD TFT‐LCD, with a faster response time and high contrast ratio, has been developed.  相似文献   

4.
Abstract— In this paper, many popular methods to study transflective liquid‐crystal‐displays (LCDs) have been discussed, and several new transflective LCD configurations with a single‐cell gap have been proposed. The traditional double‐cell‐gap method gives the best match of the transmittance/reflectance voltage curve (TVC/RVC) and also the widest viewing angle, but also brings the highest fabrication complexity. The single‐cell‐gap transflective LCD is much easier to fabricate and also shows a good match of TVC/RVC. A new methodology has been shown to find optimal configurations for single‐cell‐gap transflective LCDs. New configurations using multimode in a single pixel include twisted nematic (TN) optically compensated bend (OCB), TN electrically controlled birefringence (ECB), and TN low‐twisted nematic (LTN). TN and hybrid‐aligned nematic (HAN) modes have been investigated for single‐mode transflective LCDs. The results exhibit high contrast ratio, a good match of TVC/RVC, as well as wide viewing angle.  相似文献   

5.
We have successfully developed a quarter‐wave retardation film (QWF) for wide viewing angle 3D liquid crystal displays (3D‐LCDs) that provides high luminance, low crosstalk, low color change, and low head‐tilt‐angle dependency. It was found that the out‐of‐plane retardation (Rth) of the QWF in the LCD needs to be close to 0 nm in order to improve the 3D display properties at an off‐axis position and that the in‐plane retardation (Re) needs to be adjusted from 120 to 130 nm to achieve low color change with head tilting. We adopted a coating process for making our QWF because of its potential for retardation control. 3D‐LCDs with this QWF whose Rth was nearly zero had high performance and allowed off‐axis other than on‐axis.  相似文献   

6.
Birefringent light‐shaping films (BLSFs) for mini‐LED backlit liquid crystal displays (LCDs) are proposed and experimentally demonstrated by passive polymer‐dispersed liquid crystal (PDLC) films. Such films show angle‐selective scattering properties, achieved by proper material engineering and good vertical alignment of liquid crystals. They only respond to angles rather than spatial locations. By directly adhering the BLSF onto a LED, the angular intensity distribution of light can be tailored from Lambertian‐like to batwing‐like. Further simulation proves that by engineering the angular distribution, a fewer number of LEDs or equivalently a shorter light‐spreading distance is required to maintain good uniformity. These BLSFs are expected to find widespread applications in emerging mini‐LED backlit LCDs and shed light on designing other light‐shaping films in the future.  相似文献   

7.
Abstract— The fabrication and demonstration of field‐sequential‐color (FSC) LCDs using modules of narrow‐gap twisted‐nematic (NTN) LCDs with and without doping of newly synthesized PγCyD‐ZrO2 nanoparticles is reported. Two types of FSC‐LCDs are demonstrated: one is a direct multiplexed NTN‐LCD and the other is TFT driven. The advantages of FSC‐LCDs include their high legibility even under direct sunlight, and the mechanism for the doping of nanoparticles in LCDs is discussed.  相似文献   

8.
A new photometry to perform the viewing‐angle characterization for reflective‐type LCDs has been developed. The optics consists of a rotating ellipsoidal mirror and a 2‐D CCD camera. The information obtained by this photometry includes the viewing‐angle characteristics of reflectance, contrast ratio, and chromaticity coordinates, which are comparable to gonioscopic photometry in terms of accuracy. Both the illuminating polar angle and azimuth angle can be scanned. The measurement time for this method is as short as that for conoscopic photometry when using a 2‐D CCD camera. An instrument equipped with light‐polarizing devices is already available. If analytic software was available, viewing‐angle characterization could be determined by a polarization analysis.  相似文献   

9.
Abstract— Several TFT‐LCD devices exhibiting high image quality have been developed and commercialized, overcoming the narrow viewing‐angle characteristics of conventional twisted‐nematic (TN) devices. Nevertheless, no single device dominates large‐sized TFT‐LCDs. In this paper, the product issues of existing LC devices related to manufacturing process and performance are discussed.  相似文献   

10.
Abstract— LCDs have achieved a full‐high‐definition resolution of 1920 × 1080 (16:9), 600‐nit brightness, 3000:1 dynamic contrast ratio, 92% color gamut, 178° viewing angle, and 5‐msec response time at all gray levels and are targeted for HDTV and public‐information‐display applications. Some unique technologies, such as Cu bus line, advanced wide view polarizer, and wide‐color‐gamut lamp, were applied. A new stitching‐free technology was developed to overcome the size limitation of the photomask in both the TFT and color‐filter processes. The size of the panel (100 in.), based on the wide format (16:9), is determined by the maximum efficiency of the world's first seventh‐generation line (glass size, 1950 × 2250 mm) in LG.Philips LCD's (LPL) Paju display cluster. The issues facing 100‐in. TFT‐LCDs will be discussed.  相似文献   

11.
Abstract— A simulation method based on measured liquid‐crystal responses and human‐vision properties was proposed to characterize the motion blur of LCDs. A perceptual experiment was implemented to validate the simulation model within different viewing conditions by changing the visual angle. The results indicate that the smaller visual angle of the mobile display has no statistic significant effect on smooth‐pursuit eye tracking when perceiving a moving block on a screen. The calculation process of quantitative metric was presented based on the measured light behavior and the simulation model. In the end, the different motion‐blur reduction approaches were evaluated for mobile LCDs.  相似文献   

12.
Notebook applications have been one of the most important driving forces behind the remarkable growth of liquid‐crystal displays (LCDs). LCDs have recently been well accepted in the monitor market and large growth is forecasted because of the replacement of CRTs. The next challenge for LCDs is the TV market. These new application areas are supported by advanced LC technologies such as film‐compensated twisted nematic (TN), in‐plane switching (IPS), and vertically aligned (VA) modes. Each TFT technology requires a corresponding LC material improvement. We will review the recent liquid‐crystal material development for these advanced LC technologies.  相似文献   

13.
Abstract— A new optical compensation film refered to as WV‐EA film for TN‐mode TFT‐LCDs has been developed, resulting in higher contrast ratio, wider‐viewing‐angle characteristics, and improved color shift than their predecessors, especially in the horizontal direction. These features of the new WV film were achieved as a result of haze reduction and optimizing the optical characteristics of the polymerized discotic material layer and TAC film. These features are suitable for large‐sized and wide‐aspect‐ratio LCD monitors and TVs.  相似文献   

14.
Abstract— Image deformation caused by an outside force is observed to remain for hours at high gray levels for liquid‐crystal displays (LCDs) in the multi‐domain (MD) vertical‐alignment (VA) mode. This so‐called moving‐image‐sticking phenomenon demonstrated a non‐symmetric luminance profile for the left and right viewing direction for MDVA‐mode LCDs which have original symmetric viewing‐angle characteristics. The generation of a stable reverse‐tilt domain by an outside force was assumed to be the cause of this phenomenon, and the stability of a reverse‐tilt domain under an electric fringe field was calculated by changing the electric‐fringe‐field distribution which determines the LC tilt direction. The domain of a given tilt direction is calculated to change to other tilt direction induced by a fringe field at a low gray condition, but to remain unchanged at a high gray condition. This agrees with the observed trends of duration time of the moving‐image‐sticking phenomenon.  相似文献   

15.
Abstract— Wide‐view (WV) films for TN‐mode LCDs, which optimize the optical parameters of the polymerized discotic material (PDM) layer and cellulose triacetate (CTA) have been developed. The development concept of the WV film and realization of its concept in the past and for the future will be reviewed. In particular, the discotic molecular alignment control enabled the improvement of the contrast ratio at oblique viewing angles of TN‐mode LCDs. In addition, color shifts at oblique angles are important for large‐screen TN‐mode LCD monitors and LCD‐TV sets. To improve the color‐shift problem, new technologies have been developed.  相似文献   

16.
Abstract— Optical alignment and micro‐patterning of the alignment of liquid‐crystal displays (LCDs) by linear photopolymerization (LPP) technology renders high‐quality multi‐domain twisted‐nematic (TN) and supertwisted‐nematic (STN) displays with broad fields of view over wide temperature ranges feasible. The prerequisites are the generation of photo‐induced high‐resolution azimuthal alignment patterns with defined bias‐tilt angles 0° ≤ θ ≤ 90°. For the first time, LPP‐aligned single‐ and dual‐domain vertically aligned nematic LCDs (VAN‐LCDs) are presented. Dual‐domain VAN‐LCDs are shown to exhibit broad fields of view which are further broadened by combining the displays with LPP‐aligned optical compensators made of liquid‐crystal polymers.  相似文献   

17.
Abstract— As the panel size and the frame frequency of TFT‐LCDs increases, driving issues become much more important for larger‐sized and higher‐resolution TFT‐LCDs. In our previous paper, the pre‐emphasis driving method was proposed to shorten the driving time of the data line with heavy loads of the large‐sized TFT‐LCDs. This paper proposes a simulation model based on the evaluation results of the developed pre‐emphasis source driver, and the issues of driving the data line with heavy loads are reviewed. The single‐, pre‐emphasis, and dual‐driving methods are compared in terms of their driving time and power consumption for large‐sized TFT‐LCDs with various resistances and capacitances of the data lines. At a panel load of 250‐pF capacitance and 15‐kΩ resistance in full‐HD resolution, the pre‐emphasis driving can reduce the pixel driving time to 66% with a 54% increase in the analog power consumption.  相似文献   

18.
Abstract— A new type of fast‐optical‐response liquid‐crystal display is introduced. This display uses a certain type of smectic liquid‐crystal material that has a fast optical response as well as a native wide viewing angle. Unlike well‐known smectic‐based LCD technologies, this new type of LCD technology is highly compatibile with most nematic‐based LCDs. This compatibility provides advantages for practical uses. Here, the initial molecular alignment and drive concept as well as the general performance of this new display technology are discussed.  相似文献   

19.
Abstract— Liquid‐crystal (LC) photoalignment using azo dyes is described. It will be shown that this photoaligning method can provide a highly uniform alignment with a controllable pretilt angle and strong anchoring energy of the LC cell, as well as a high thermal and UV stability. The application of LC photoalignment to the fabrication of various types of liquid‐crystal displays, such as VAN‐LCDs, FLCDs, TN‐LCDs, and microdisplays, on glass and plastic substrates is also discussed. Azo‐dye photoaligned super‐thin polarizers and phase retarders are considered as new optical elements in LCD production, in particular for transflective displays.  相似文献   

20.
Abstract— Liquid‐crystal displays (LCDs) have notable variation in luminance and perceived contrast as a function of the angle from which they are viewed. Though this is an important performance issue for LCDs, most evaluation techniques for assessing this variation have been limited to laboratory settings. This study demonstrates the use of a photographic technique for such an evaluation. The technique is based on an actively cooled charge‐coupled‐device (CCD) detector in combination with a macro lens covering a circular angular range (θ) of ±42.5°. The camera was used to evaluate the luminance and perceived contrast properties of an LCD. Uniform field images corresponding to 17 equally spaced gray‐scale values in the digital driving level (DDL) range of the display system were acquired. The 12‐bit gray‐scale digital images produced by the camera were converted to luminance units (cd/m2) via the measured luminance vs. DDL response function of the camera. The changes in perceived contrast as a function of viewing angle were derived from the Barten model of the gray‐scale response of the human‐visual system using the methods proposed by the AAPM TG18 Report. The results of this photographic technique were compared to measurements acquired from a similar display using a Fourier‐optics‐based luminance meter. The results of the two methods generally agreed to within 5%. The photographic methods used were found to be accurate and robust for in‐field assessment of the angular response of LCDs over the FOV of the camera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号