首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultra‐wideband magnetic near‐field probe based on a conventional low‐cost four layers of FR‐4 printed circuit board is proposed in this article. It can be used to measure the magnetic near‐field strength from RF magnetic sources or electronic devices for EMI conformance test. The operating frequency of the probe is from 1 GHz up to 20 GHz. The probe is constructed based on a coplanar waveguide and stripline with a short‐end loop. The probe dimension is 10 mm × 25 mm × 0.6 mm. The prototype probe is electric field‐shield structure and has a very high unwanted electric field suppression ratio about 17.7 dB. The probe calibration factor from the simulation agrees well with the calibration factor computed from the measurement. The average probe factor is 38.8 dBS/m and probe sensitivity is 47.4 dB μ A/m.  相似文献   

2.
The one‐step leapfrog alternative‐direction‐implicit finite‐difference time‐domain (ADI‐FDTD), free from the Courant‐Friedrichs‐Lewy (CFL) stability condition and sub‐step computations, is efficient when dealing with fine grid problems. However, solution of the numerous tridiagonal systems still imposes a great computational burden and makes the method hard to execute in parallel. In this paper, we proposed an efficient graphic processing unit (GPU)‐based parallel implementation of the one‐step leapfrog ADI‐FDTD for the far‐field EM scattering simulation of objects, in which we present and analyze the manners of calculation area division and thread allocation and a data layout transformation of z components is proposed to achieve better memory access mode, which is a key factor affecting GPU execution efficiency. The simulation experiment is carried out to verify the accuracy and efficiency of the GPU‐based implementation. The simulation results show that there is a good agreement between the proposed one‐step leapfrog ADI‐FDTD method and Yee's FDTD in solving the far‐field scattering problem and huge benefits in performance were encountered when the method was accelerated using GPU technology.  相似文献   

3.
Abstract— Organic‐polymer‐based thin‐film transistors (OP‐TFTs) look very promising for flexible, large‐area, and low‐cost organic electronics. In this paper, we describe devices based on spin‐coated organic polymer that reproducibly exhibit field‐effect mobility values around 5 × 10?3 cm2/V‐sec. We also address fabrication, performance, and stability issues that are critical for the use of such devices in active‐matrix flat‐panel displays.  相似文献   

4.
Abstract— An active‐matrix field‐emission display (AMFED), based on carbon‐nanotube (CNT) emitters and amorphous‐silicon thin‐film transistors (a‐Si TFTs), was developed. The AMFED pixels consisted of a high‐voltage a‐Si TFT and mesh‐gated CNT emitters. The AMFED panel demonstrated high performance for a driving voltage less than 15 V. The low‐cost large‐area AMFED approach using a metal‐mesh technology is proposed.  相似文献   

5.
Abstract— Passive‐matrix‐driven field‐sequential‐color (FSC) displays were successfully fabricated. It makes use of a new multiplex driving scheme that does not depend on voltage averaging. Instead, a transient response of the liquid crystal is employed. An addressing and response time of less than 70 μsec and 2.0 msec, respectively, are used. Scanning time compensation is also introduced to improve the brightness uniformity of the display.  相似文献   

6.
Abstract— Through the realization of a blue‐phase‐mode (hereinafter, the operational mode of liquid crystal having a blue phase is referred to as a blue‐phase mode), a display using an improved field‐sequential method was confirmed to be capable of display at a frame rate of 180 fps (field frequency of 540 Hz) or higher. Under this condition, an image without annoyance caused by color breakup was obtained. Moreover, a novel field‐sequential AMLCD integrated with a scan driver by combining the liquid‐crystal‐display (LCD) technology using blue phase and oxide‐semiconductor technology has been developed.  相似文献   

7.
Abstract— A single‐cell‐gap transflective liquid‐crystal display with special electrodes was demonstrated. In the transmissive region, a strong longitudinal electric field was generated by decreasing the distance between the top and bottom transparent indium‐tin‐oxide electrodes; while in the reflective region, a weak longitudinal electric field is generated by increasing the distance between the top and bottom transparent indium‐tin‐oxide electrodes. And slit‐patterned electrodes were used to optimize the fringe field at the junction of the transmissive and reflective regions. As a result, both the transmissive and reflective display modes show well‐matched gray scales. The simulated single‐cell‐gap TR‐LCD has good performances.  相似文献   

8.
Novel liquid‐crystal (LC) mixtures featuring high optical anisotropy Δn) and small rotational viscosity (γ1) were developed for field‐sequential‐color TN‐LCD applications. The dynamic behavior of the TN cells in a narrow‐gap range was studied and new tolane LC substances were introduced. The newly developed LC mixtures, having a narrow‐gap cell, enable a TN‐LCD to switch fast enough to be applied to field‐sequential‐color displays not only at a room temperature but also at low temperatures. It was also confirmed that the voltage‐holding ratio (VHR) is sufficiently high in field‐sequential addressing conditions and, therefore, the LC mixtures can be used in active‐matrix LCDs. For practical use, a storage test of the TN cells under light irradiation was performed to evaluate their voltage‐holding property. It was also confirmed that their high VHR can be maintained for over 10,000 hours under practical conditions.  相似文献   

9.
Abstract— A spatially and temporally scanning backlight consisting of ten isolated micro‐structured light guides has been developed to be combined with a fast‐response optically‐compensated‐bend‐mode field‐sequential‐color LCD in which the liquid‐crystal cell does not contain color filters. The sequential fields of three primary colors are generated by illumination of the red‐, green‐, and blue‐light‐emitting diodes, each illuminating for one‐half of the field, resulting in a luminance of 200 cd/m2 for the LCD. The effect of light leakage between the blocks in the scanning backlight in field‐sequential‐color applications was measured and will be described.  相似文献   

10.
Abstract— We studied the silicide‐mediated crystallization of a‐Si for low‐temperature polycrystalline‐silicon (LTPS) on glass. By controling the heating method and Ni density on the a‐Si, the grain size could be increased to 40 μm. Radial grain growth from a NiSi2 crystalline nucleus gives rise to a large‐grain poly‐Si without amorphous phase inside. A field‐effect mobility of over 200 cm2/V‐sec was achieved by using LTPS.  相似文献   

11.
Abstract— A fringe‐field‐switching (FFS) mode cell having LC alignment has been developed by using a non‐rubbing method, a ion‐beam‐alignment method on a‐C:H thin film, to analyze the electro‐optical characteristics of this cell. The suitable inorganic thin film for FFS‐LCDs and the alignment capabilities of nematic liquid crystal (NLC) have been studied. An excellent voltage‐transmittance (V‐T) and response‐time curve for the ion‐beam‐aligned FFS‐LCDs were observed using oblique ion‐beam exposure on DLC thin films.  相似文献   

12.
A head‐mounted light field display based on integral imaging is considered as one of the promising methods that can render correct or nearly correct focus cues and address the well‐known vergence‐accommodation conflict problem in head‐mounted displays. Despite its great potential, it still suffers some of the same limitations of conventional integral imaging‐based displays such as low spatial resolution and crosstalk. In this paper, we present a prototype design using tunable lens and aperture array to render 3D scenes over a large depth range while maintaining high image quality and minimizing crosstalk. Experimental results verify and show that the proposed design could significantly improve the viewing experience.  相似文献   

13.
Image‐based rendering techniques are a powerful alternative to traditional polygon‐based computer graphics. This paper presents a novel light field rendering technique which performs per‐pixel depth correction of rays for high‐quality reconstruction. Our technique stores combined RGB and depth values in a parabolic 2D texture for every light field sample acquired at discrete positions on a uniform spherical setup. Image synthesis is implemented on the GPU as a fragment program which extracts the correct image information from adjacent cameras for each fragment by applying per‐pixel depth correction of rays. We show that the presented image‐based rendering technique provides a significant improvement compared to previous approaches. We explain two different rendering implementations which make use of a uniform parametrisation to minimise disparity problems and ensure full six degrees of freedom for virtual view synthesis. While one rendering algorithm implements an iterative refinement approach for rendering light fields with per pixel depth correction, the other approach employs a raycaster, which provides superior rendering quality at moderate frame rates. GPU based per‐fragment depth correction of rays, used in both implementations, helps reducing ghosting artifacts to a non‐noticeable amount and provides a rendering technique that performs without exhaustive pre‐processing for 3D object reconstruction and without real‐time ray‐object intersection calculations at rendering time.  相似文献   

14.
Benefiting from the high conductivity and superb flexibility, graphene‐based materials are promising to replace metal for near‐field communication (NFC) applications. Herein, we report a flexible NFC tag antenna based on high‐conductivity graphene‐assembled films (HCGAFs) and investigate how the performance of the antenna is affected by antenna design and human body effect. The fabricated prototype via a one‐step laser‐direct mold engraving method shows a 10 dB bandwidth of 2.5 MHz centering at 13.70 MHz with a quality factor (Q) of 9.19. The maximum read range of the HCGAF NFC tag is measured to be around 7.5 cm, comparable to the commercially available metal NFC tags. Moreover, the flexible nature of HCGAFs guarantees excellent mechanical stability and deformation insensitivity, especially when compared to commercial metal‐based counterparts. We further demonstrate the practical applications of the HCGAF tag as key card and electronic business card in the vicinity of human body.  相似文献   

15.
Abstract— The in‐plane‐switching (IPS) mode exhibits an inherently wide viewing angle and has been widely used for liquid‐crystal‐display (LCD) TVs. However, its transmittance is limited to ~76% compared to that of a twisted‐nematic (TN) cell if a positive‐dielectric‐anisotropy LC is employed. A special electrode configuration that fuses the switching mechanism of the conventional IPS and the fringe‐field switching (FFS) to boost the transmittance to ~90% using a positive LC has been developed. The new mode exhibits an equally wide viewing angle as the IPS and FFS modes.  相似文献   

16.
Abstract— Electrowetting‐based displays have been successfully demonstrated in reflective mode, showing video capability and high optical performance. However, because this technology is based on a high‐efficiency optical switch operating between a light‐absorbing state and a light‐transmitting state, the technology lends itself naturally to a transmissive mode enabling a complete range of applications. This paper describes the first active‐matrix full‐color transmissive electrowetting displays including its main technical and system aspects. Two architectures have been demonstrated: one uses color filters, the other field‐sequential‐color illumination. The paper also introduces alternative concepts for more efficient color transmissive electrowetting displays with multiple absorbing layers.  相似文献   

17.
Abstract— A blue‐phase liquid‐crystal grating is proposed by applying a vertical electric field with lateral periodic distribution. Simulation on electric‐field distribution was also carried out, the results of which suggest the alternation of isotropic and ordinary refractive indices in the lateral direction. Through the electrode configuration design, both 1 D and 2D gratings were demonstrated with high transmittance of ca. 85%. The diffraction efficiency of the first order reached up to 38.7% and 1 7.8% for the 1D and 2D cases, respectively. The field‐induced fast phase modulation permits a rapid switching of diffraction orders down to the submillisecond scale.  相似文献   

18.
Approach to achieve self‐calibration three‐dimensional (3D) light field display is investigated in this paper. The proposed 3D light field display is constructed up on spliced multi‐LCDs, lens and diaphragm arrays, and directional diffuser. The light field imaging principle, hardware configuration, diffuser characteristic, and image reconstruction simulation are described and analyzed, respectively. Besides the light field imaging, a self‐calibration method is proposed to improve the imaging performance. An image sensor is deployed to capture calibration patterns projected onto and then reflected by the polymer dispersed liquid crystal film, which is attached to and shaped the diffuser. These calibration components are assembled with the display unit and can be switched between display mode and calibration mode. In the calibration mode, the imperfect imaging relations of optical components are captured and calibrated automatically. We demonstrate our design by implementing the prototype of proposed 3D light field display by using modified off‐the‐shelf products. The proposed approach successfully meets the requirement of real application on scalable configuration, fast calibration, large viewing angular range, and smooth motion parallax.  相似文献   

19.
Abstract— Field‐sequential‐color technology eliminates the need for color filters in liquid‐crystal displays (LCDs) and results in significant power savings and higher resolution. But the LCD suffers from color breakup, which degrades image quality and limits practical applications. By controlling the backlight temporally and spatially, a so‐called local‐primary‐desaturation (LPD) backlight scheme was developed and implemented in a 180‐Hz optically compensated bend (OCB) mode LCD equipped with a backlight consisting of a matrix of light‐emitting diodes (LEDs). It restores image quality by suppressing color breakup and saves power because it has no color filter and uses local dimming. A perceptual experiment was implemented for verification, and the results showed that a field‐sequential‐color display with a local‐primary‐desaturation backlight reduced the color breakup from very annoying to not annoying and even invisible.  相似文献   

20.
Multi‐planar plenoptic displays consist of multiple spatially varying light‐emitting and light‐modulating planes. In this work, we introduce a framework to display light field data on this new type of display device. First, we present a mathematical notation that describes each of the layers in terms of the corresponding light transport operators. Next, we explain an algorithm that renders a light field with depth into a given multi‐planar plenoptic display and analyze the approximation error. We show two different physical prototypes that we have designed and built: The first design uses a dynamic parallax barrier and a number of bi‐state (translucent/opaque) screens. The second design uses a beam splitter to co‐locate two pairs of parallax barriers and static image projection screens. We evaluate both designs on a number of different 3D scenes. Finally, we present simulated and real results for different display configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号