首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
工程水泥基复合材料(engineered cementitious composite,ECC)是经系统的微观力学设计,在拉伸和剪切荷载下呈现高延展性的一种纤维增强水泥基复合材料。研究表明,ECC具有应变-硬化特性,在力学、安全方面具有优于普通纤维增强混凝土的特殊性能。ECC受拉破坏时的极限拉应变是普通混凝土的近500倍,具有极强的韧性并对裂缝起到了一定的控制作用,可以极大地提高结构的安全性和耐久性。经四点弯曲试验,研究人员得出ECC极限挠度高达普通混凝土的40倍。此外,ECC材料的抗冻融循环和抗收缩性能也十分优异。这些突出的力学性能使得近年来该材料在实际工程设计和施工中得到了越来越广泛的运用。  相似文献   

2.
自19世纪20年代波特兰水泥问世以来,传统的水泥基材料便广泛应用于交通工程,为我们的社会文明做出了重要的贡献。如今交通工程向着更高、更深、更复杂的方向发展着,传统的水泥基材料由于其自重大、易开裂、耐久性不足等自身不足而面临着具有超高韧性、良好的裂缝控制能力、能量吸收能力强等优点的新型水泥基复合材料的挑战。近年来顺应发展趋势应运而生的新型水泥基复合材料有MDF、DSP和ECC等,本文着重介绍新型水泥基复合材料ECC(Engineered Cementitious Composites),通过与传统水泥基材料的比较,总结出ECC的优点,并简要介绍了ECC在国外中的应用,最后阐述对ECC展望。  相似文献   

3.
超高韧性水泥基复合材料(UHTCC)具有抗拉性能好、裂缝宽度可控、耐久性强以及受拉应变硬化特征等优点,克服了传统水泥基复合材料的易开裂破坏的缺点,适合于受拉混凝土构件或裂缝要求高的混凝土构件。剪力墙是一种抗震性能良好的结构构件,但其边缘为拉压破坏的易损区域,采用超高韧性混凝土材料替换传统混凝土可望获得更优异的抗震性能。基于求解结构非线性行为的向量式有限元(VFIFE)方法,采用自开发程序模拟分析超高韧性水泥基复合材料剪力墙拟静力推覆全过程。模拟结果表明,超高韧性水泥基复合材料具有优异的抗拉性能及韧性性能,可以有效改善剪力墙开裂后的工作性能,从而提高构件的抗震性能,因此具有重要的工程应用价值。  相似文献   

4.
介绍了混凝土裂缝的分类以及常规的修补方法,并结合实际工程案例,对超高韧性水泥基复合材料(Engineered Cementations Composite,ECC)修补混凝土结构裂缝的技术进行了分析,最后总结了ECC修补技术面临的问题,为裂缝修补技术的进一步研究提供参考.  相似文献   

5.
纤维增强复合材料筋(Fiber Reinforced Polymer,简称FRP)具有超高的抗拉强度,有望在恶劣环境下代替钢筋使用;但是GFRP筋弹性模量较小,导致GFRP筋增强混凝土结构变形和裂缝宽度较大,影响正常使用。超高韧性纤维增强水泥基复合材料(Engineered Cementitious Composites,简称ECC)作为一种高性能土木工程建筑材料,与普通混凝土相比具有超高韧性、应变硬化、多级开裂和细密裂缝特征。GFRP筋增强ECC结构能够实现较小的裂缝宽度和超高耐久性能,因此具有良好的应用前景。然而,FRP筋与ECC之间的黏结性能尚不清楚,相关文献较少。拟开展FRP筋与不同强度和韧性的ECC材料的黏结性能试验研究,通过中心拉拔试验,测试其拔出承载力和端部黏结滑移,描述试验现象,分析其黏结滑移曲线特征。分析了ECC材料不同强度和韧性对于黏结性能的影响。研究发现:ECC材料和FRP筋的中心拉拔试验荷载-滑移曲线由上升段,下降段和波浪状的残余段3部分组成;ECC材料较高的强度和韧性对FRP与ECC的黏结强度都发挥着有利的作用;FRP与ECC的黏结强度是ECC强度和韧性综合影响的结果,其并不随着单一因素的提高而提高。  相似文献   

6.
纤维增强水泥基复合材料(Engineered Cementitious Composite,ECC)具有高延展性以及受拉刚化特点,应用于组合梁桥的负弯矩区时可有效减少桥面板的受拉开裂。完成了2根钢-ECC组合梁和1根钢-混凝土组合梁对比构件在负弯矩作用下的静力加载试验,通过试验研究了不同配筋率的ECC对结构受力性能特别是抗裂性的影响。试验研究表明:在负弯矩作用下,钢-ECC组合梁的刚度较钢-混凝土组合梁明显提高|由于ECC翼板的抗拉作用导致截面中和轴上升,钢梁受压区增大,构件延性有所降低|钢-ECC组合梁可有效提高结构的开裂荷载并减小裂缝宽度,提高配筋率有利于进一步减少ECC翼板的裂缝宽度。提出了钢-ECC组合梁的承载力与开裂荷载的计算方法,提供了挠度分析的方法和裂缝宽度的基本模型。  相似文献   

7.
ECC(Engineered cementitious composite)是具有拉伸应变硬化特性和多裂缝开展机制的一种高延性纤维增强水泥基复合材料。文章基于ECC材料在往复荷载作用下的试验结果,编制了ECC材料在往复荷载作用下的简化本构模型程序,并且基于纤维模型对钢筋增强ECC/混凝土组合节点在往复荷载作用下受力性能进行了数值模拟。模拟结果与试验结构吻合良好,所采用的ECC材料本构模型能够较为准确地模拟组合节点在往复荷载作用下的性能指标,如承载力、残余变形和耗能能力等。  相似文献   

8.
采用拉应变可达3%~5%、极限受拉破坏时平均裂缝间距和平均裂缝宽度仅为1mm~2mm和60μm~100μm的工程用水泥基复合材料(engineered cementitious composite,ECC)替换普通钢筋混凝土梁受拉区的部分混凝土材料形成ECC-RC复合梁,可提高构件的承载能力、延性和耐久性。文章系统介绍了工程水泥基复合材料的力学性能及其与钢筋粘结的本构关系,并总结了ECC-RC复合梁的弯曲抗裂和正截面承载力的计算理论,以及复合梁界限条件、变形能力、延性和配筋率对ECC梁弯曲性能的影响,可供工程设计人员参考。  相似文献   

9.
高延性水泥基复合材料(Engineered Cementitious Composite,ECC)是一种使用微观力学、断裂力学对复合材料进行系统分析得到的具有超高韧性的纤维增强水泥基复合材料。ECC作为一种高性能新材料,能够显著改善结构构件的力学性能,将其合理的应用于结构构件中也是其重要的发展趋势。对ECC材料进行了介绍,综述了ECC材料性能、ECC在建筑结构中的研究应用现状,就现有的应用形式方面的不足进行了评述和展望。  相似文献   

10.
短纤维增强超高韧性水泥基复合材料(Engineered Cementitious Composites,通常称为ECC材料)可以将传统水泥基材料在抗拉荷载下单一裂纹的宏观开裂模式转化为多条细密裂缝的微观开裂模式,其极限拉伸应变可达2%甚至达6%,具有典型的应变硬化特性、显著的韧性特征和优良的耐久性能。纤维编织网增强混凝土(Textile Reinforced Concrete,简称TRC)同样是一种新型的纤维增强水泥基复合材料,在这种复合材料结构中,直接将纤维粗纱沿混凝土结构中的应力主向连续布置,纤维对基体的增强效果得到了显著提高。采用纤维编织网与PVA短纤维相结合研究开发新型混凝土结构防裂新技术,结合PVA短纤维增强ECC和纤维编织网两种材料的优点,可以获得更为优良的抗裂和控制裂缝的能力,从而极大程度地提高混凝土结构的耐久性和使用寿命。通过四点弯曲试验,研究纤维编织网表面处理方法、水胶比、PVA纤维掺量对此种复合材料裂缝控制能力和承载能力的影响,并与TRC的弯曲性能作了比较。  相似文献   

11.
采用国产纤维制成的高性能水泥基复合材料(ECC)替代部分混凝土,形成受拉区部分为ECC的RC/ECC组合梁(RE梁),并与普通钢筋混凝土梁(RC梁)进行抗弯性能对比试验研究。结果表明,RE梁的破坏模式为受剪破坏,极限抗弯承载能力约为RC梁的1.35倍,平均最大跨中挠度约为RC梁的1.5倍;在加载过程中,RE梁的裂缝宽度随荷载的增长速率远远低于RC梁,裂缝数目多、间距小、宽度小。采用ECC替代20%梁高的受拉区混凝土可使梁获得较为优越的抗弯性能。  相似文献   

12.
分析比较了各国学者针对PVA纤维增强水泥基复合材料进行单轴直接拉伸采用的试件形式和试验方法,发现用矩形长条试件、两端粘贴铝片,并采用闭环试验机、位移控制方法得到的拉伸效果最好,这揭示了应变硬化效果与选择的拉伸方法关系较大。对比了混凝土、钢纤维混凝土和PVA纤维增强水泥基复合材料的拉伸应力-应变曲线,以及由其拉伸应力-应变曲线计算得到的对应应变软化材料和应变硬化材料的应力-裂缝宽度曲线,根据得到的应变硬化材料的应力-裂缝宽度曲线计算出了PVA纤维增强水泥基复合材料的断裂能是普通混凝土的50倍。  相似文献   

13.
高延性纤维增强水泥基复合材料(ECC)是一种具有应变硬化特性和多裂缝开展机制的新型建筑材料。对于钢筋混凝土构件,用ECC材料代替混凝土能够有效提高构件的强度和延性性能。文章对普通钢筋混凝土梁-柱节点和钢筋混凝土/ECC组合梁-柱节点构件进行了低周反复加载试验研究。结果表明:对于节点区未配箍筋的节点构件,在节点区用ECC材料代替混凝土能够显著提高构件的承载力、变形及延性性能;钢筋混凝土/ECC组合梁-柱节点构件的抗震性能比在节点区配置箍筋的钢筋混凝土节点也要更优越。  相似文献   

14.
研究了粉煤灰掺量对PVA纤维增强水泥基复合材料(ECC)的新拌性能、弯曲性能、抗压抗折强度、开裂模式及微观结构的影响.结果表明:随着粉煤灰掺量的增加,水泥净浆的屈服剪切应力和塑性黏度不断降低,ECC的流动度增加.ECC的初始开裂荷载降低、抗折和抗压强度逐渐降低,ECC的跨中挠度提高,ECC的平均裂缝宽度变小.在满足抗压强度的前提下,适当增加粉煤灰掺量有助于提高ECC的韧性和延性.  相似文献   

15.
为了合理利用高性能纤维增强水泥基复合材料,进行RC/ECC组合梁抗弯性能试验研究。研究表明:采用国产纤维配置的RC/ECC组合梁的抗弯承载能力、变形能力、裂缝控制能力均优于钢筋混凝土梁和钢筋增强ECC梁,且能将成本控制在钢筋混凝土梁的1.2倍左右,ECC厚度取60mm(38%梁高)时具有较高的性价比。需高度重视混凝土与ECC材料的界面处理以提高界面的有效粘结。  相似文献   

16.
为解决纤维增强复材(FRP)筋混凝土梁裂缝宽度和变形均较大的问题,采用受拉性能优良的工程用水泥基复合材料(ECC)取代FRP筋周围受拉混凝土形成FRP筋ECC-混凝土复合梁。通过对2组FRP筋ECC-混凝土复合梁、1组钢筋ECC-混凝土复合梁(每组5种不同ECC替代高度)的受弯试验,分析试件的开裂、屈服、极限荷载以及各级荷载下试件的挠度、裂缝、纵筋应变、混凝土平均应变。研究表明:钢筋/FRP筋与混凝土/ECC有较好的协同变形能力,ECC与混凝土也有较好的黏结性能;复合梁截面的平均应变均符合平截面假定;复合梁在正常使用状态下,受拉区ECC能充分发挥其应变硬化特性,形成较多细而密的裂缝;FRP筋ECC-混凝土复合梁可有效控制梁的变形值,提高梁的抗弯承载能力。  相似文献   

17.
《工业建筑》2013,(7):80-85
高延性水泥基复合材料(ECC)具有准应变硬化和多裂缝开展的性能,能够明显改善混凝土结构的抗震性能和耐久性。通过对32组192个试件进行抗压强度正交试验,研究ECC材料的立方体受压破坏过程,研究水胶比、纤维掺量、粉煤灰掺量和砂胶比4种因素对ECC立方体抗压强度尺寸效应的影响。试验结果表明:聚乙烯醇PVA纤维掺量增大,ECC抗压韧性明显提高;水胶比和纤维掺量是影响ECC抗压强度和尺寸效应的主要因素;水胶比增大,ECC抗压强度降低,尺寸效应系数增大;纤维掺量增大,试块抗压强度增大,尺寸效应系数增大。抗折试验表明,随着纤维掺量的增加,ECC材料的抗折强度显著提高。  相似文献   

18.
普通钢筋混凝土结构存在着严重的耐久性问题,工程纤维增强水泥基复合材料(ECC)具有较高的延性和微裂缝控制能力,是有望解决工程结构耐久性问题的新型建筑材料。对ECC材料进行了介绍,综述了ECC的抗收缩性能、抗冻融性能、抗疲劳性能与抗渗性能的试验研究现状,以及ECC在实际工程中的应用。指出了推广应用ECC需要开展的工作和亟待解决的问题。  相似文献   

19.
桥面无缝化设计能够提高桥梁主体结构的耐久性能,是解决桥面伸缩缝维护难题的重要方法。结合高耐腐蚀纤维增强复材(FRP),充分发挥纤维水泥基复合材料(ECC)的高延性。对GFRP筋、BFRP筋和钢筋增强连接板的工作性能、裂缝发展、应变及变形能力进行对比研究,针对GFRP筋连接板设置低配筋率对照组,研究其对整体性能的影响。结果表明,正常服役状态下,连接板最大裂缝宽度均小于限值,满足裂缝宽度要求;钢筋增强连接板的残余变形量远高于FRP增强连接板; FRP筋与ECC较低的刚度差异使得ECC材料多裂缝充分开展; FRP筋连接板主体结构受连接板变形影响较小,且在大变形条件下工作性能良好。依据连接板正常服役筋材应力水平与筋材应力限值,定义连接板正常服役安全系数,定量反映结构构件安全程度。同等配筋率FRP筋增强连接板安全系数均远高于钢筋增强连接板,且GFPR筋配筋率的降低对安全系数影响较小。  相似文献   

20.
为了增强水泥基材料自修复的潜力,对掺入渗透结晶材料的混凝土混合物进行了评估。通过测量改性混凝土的强度和裂缝宽度,分析了使用结晶掺合料对混凝土力学性能与裂缝宽度的影响。结果表明渗透结晶材料有利于改善混凝土的抗压性能和裂缝自修复宽度,提高了混凝土的结构完整性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号