首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of weak polyelectrolyte films on planar and spherical supports has recently evoked major interest, as such coatings allow novel material properties to be tunable by pH and salt adjustment of the polyelectrolyte deposition conditions. We report on the build up of multilayers of the weak polyelectrolytes poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) on submicrometer‐sized polystyrene (PS) and silica colloid spheres (~ 500 nm) with the aid of copper ion templating. The copper ions complex to the carboxylate groups of PAA, facilitating the formation of PAA/PAH multilayers on the particles. Regular growth of the layers on the colloid spheres with each polyelectrolyte deposition step was confirmed by microelectrophoresis, single‐particle light scattering (SPLS), and transmission electron microscopy (TEM), with an average bilayer thickness of ~ 3 nm. The polyelectrolyte multilayer‐coated particles formed stable colloidal dispersions, with ζ‐potentials ranging from 30 mV (PAH outer layer) and –50 mV (PAA outer layer). Complementary quartz‐crystal microbalance and UV‐vis spectrophotometry studies on PAA/PAH multilayers formed on planar supports were performed to examine the film formation and the role of copper ion binding to the layers. PAA/PAH multilayers formed on colloid particles were also chemically crosslinked by using the activator 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC). The degree of film crosslinking could be readily controlled by varying the concentration of EDC employed. Following solvent decomposition of the template particles coated with crosslinked PAA/PAH multilayers, intact hollow polymer capsules were obtained. These capsules were found to be impenetrable to polystyrene.  相似文献   

2.
Electrospun ionic nonwovens are obtained by green electrospinning of aqueous dispersions. The resulting nonwovens are termed as chameleon nonwovens since their surface properties can be tailored in a large variety by coating of different functionalities following the protocol of the layer‐by‐layer process (LBL). The dimensional stability of the electrospun fibers in the chameleon nonwovens is achieved by photo‐cross‐linking after electrospinning and thereby overcoming the repulsive forces of the ionic moieties in the fibers. Depending on the nature of the ionic moieties different materials are coated by LBL including dyes, antibacterial materials, silver, and gold nanoparticles. Enhanced coating efficiency for coating of metal nanoparticles is observed when the chameleon nonwovens were precoated by a polyelectrolyte.  相似文献   

3.
Nanostructured titania‐polyelectrolyte composite and pure anatase and rutile titania tubes were successfully prepared by layer‐by‐layer (LbL) deposition of a water‐soluble titania precursor, titanium(IV ) bis(ammonium lactato) dihydroxide (TALH) and the oppositely charged poly(ethylenimine) (PEI) to form multilayer films. The tube structure was produced by depositing inside the cylindrical pores of a polycarbonate (PC) membrane template, followed by calcination at various temperatures. The morphology, structure and crystal phase of the titania tubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and UV‐vis absorbance measurements. The as‐prepared anatase titania tubes exhibit very promising photocatalytic properties, demonstrated by the degradation of the azodye methyl orange (MO) as a model molecule. They are also easily separated from the reaction system by simple filtration or centrifugation, allowing for straightforward recycling. The reported strategy provides a simple and versatile technique to fabricate titania based tubular nanostructures, which could easily be extended to prepare tubular structures of other materials and may find application in catalysis, chemical sensing, and nanodevices.  相似文献   

4.
Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer‐by‐layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface‐functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introduce sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low‐surface‐tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non‐fouling materials.  相似文献   

5.
Multilayer thin films of ~ 7 nm diameter gold nanoparticles (GNPs) linked with horse heart myoglobin (Mb) are fabricated, for the first time, by layer‐by‐layer (LbL) assembly on glass slides, and silicon and plastic substrates. The GNP/Mb nanocomposite films show sharp surface plasmon resonance (SPR) absorption bands that are used to follow the LbL growth of the film and to determine the kinetics of GNP adsorption on the Mb‐modified surface. The GNP/Mb nanocomposite films are characterized using atomic force microscopy, transmission electron microscopy, polarized UV‐vis spectroscopy, and spectroscopic ellipsometry. The GNPs in the multilayer films are spatially separated from one another, and interparticle interactions remain in the film, making it optically anisotropic. The GNP/Mb nanocomposite films are stable in air at temperatures up to 100 °C, and can withstand successive immersions in strongly acidic and basic solutions. The SPR absorption band of the GNP/Mb nanocomposite film in air exhibits a red‐shift in the wavelength maximum and an increase in the maximum absorbance relative to that in water. This result, which is in contrast to that observed with a GNP monolayer on an aminosilane‐functionalized substrate, suggests the shrinkage in air and swelling in water of Mb molecules embedded in the nanocomposite film.  相似文献   

6.
Fluorescent gold nanoparticles are important biological labels, in particular for combined optical and electron microscopy. It is reported that density and type of surface ligands have key influence on the dominant UV‐vis fluorescence band in positively and negatively charged gold nanoparticles capped with citrate, gold oxide, and cetyltrimethyl ammonium bromide (CTAB). The peak excitation and emission energies and fluorescence intensities vary with nanoparticle size, reflecting changes in surface charge and surface potential as well as a varying density of surface adsorbates. The fluorescence peak shifts, the evolution of zeta potentials, and fluorescence intensity trends are explained by a model of the principal fluorescence transitions that takes into account the nanoparticle surface conditions, such as the adhesion of ligands. Varying surface ligands is a simple strategy to optimize fluorescence intensity and to design spectral properties of gold nanoparticles.  相似文献   

7.
Aiming at the formation of inorganic/organic hybrid gold nanoparticle superstructures, the design and synthesis of acetylene‐monofunctionalized multidentate thioether ligands and their ability to stabilize gold nanoparticles are presented. Rather monodisperse gold particles with diameters of about 1 nm are obtained, which are coated by a small number of ligands, each comprising a silyl‐protected acetylene. The acetylene is attached at the end of a rigid ethynylene‐phenylene unit of variable length, leading to functionalized gold nanoparticles carrying acetylenes at different distances from the nanoparticle surface. These particles are interlinked by diacetylene formation and are investigated by transmission electron microscopy and UV/vis spectroscopy, revealing the formation of nanoparticle aggregates and small superstructures such as dimers or trimers while the nanoparticles themselves retain their integrity. The interparticle distance in small nanoparticle superstructures reflects the ethynylene‐phenylene spacer length corroborating the wet chemical interlinking as the origin of these organic/inorganic hybrid structures.  相似文献   

8.
This work presents a new type of feed‐back active coating with inhibitor‐containing reservoirs for corrosion protection of metallic substrates. The reservoirs are composed of stratified layers of oppositely charged polyelectrolytes deposited on AA2024 aluminum alloy coated with hybrid sol‐gel film. The layer‐by‐layer assembled polyelectrolyte film with the entrapped corrosion inhibitor is constructed by sequential spray‐coating deposition of water solutions of poly(ethyleneimine), poly(sodium styrenesulfonate) and 8‐hydroxyquiniline on the top of the sol‐gel coating. The active corrosion protection of AA2024 alloy coated with SiO2/ZrO2 sol‐gel film and modified by polyelectrolytes is demonstrated by electrochemical impedance spectroscopy and scanning vibrating electrode technique. The results obtained here show that polyelectrolyte films deposited atop of the hybrid sol‐gel coating on AA2024 alloy remarkably improve the long‐term protection performance providing additional “intelligent” anticorrosion effect that results from delivery of inhibiting species “on demand”. This becomes possible since the configuration of the polyelectrolyte molecules depends on the presence of H+ ions making the polyelectrolyte film sensitive to the pH of the surrounding solution. The source of local pH changes is the corrosion process starting in the micro‐ and nano‐defects leading to increased permeability of the polyelectrolyte reservoir and, consequently, to controllable release of entrapped inhibitor.  相似文献   

9.
Hybrid thin films of conjugated polymers and CdSe nanoparticles have been fabricated by using a layer‐by‐layer (LbL) approach driven by covalent coupling reactions. This method permits facile covalent crosslinking of the polymer/nanoparticle interlayers in common organic solvents, which provides a general route for preparing robust and uniform functional thin films. The deposition process is linearly related to the number of bilayers as monitored by UV‐vis absorption spectroscopy and ellipsometry. Characterization of the multilayer structures has been carried out by fluorescence spectroscopy, X‐ray photoelectron spectroscopy (XPS), and grazing‐angle Fourier‐transform infrared spectroscopy (FTIR). Techniques such as atomic force microscopy (AFM) and scanning electron microscopy (SEM) have also been used. A preliminary application of the hybrid films in the development of organic photovoltaics is presented. Upon illumination with white light at 10 mW cm–2, the self‐assembled multilayer films exhibit steady photocurrent responses with an overall optical‐to‐electrical power conversion efficiency of 0.71 %.  相似文献   

10.
The mechanism of gold nanoparticle chain assembly associated with the induction of electric dipole–dipole interactions arising from the partial ligand exchange of surface‐adsorbed citrate ions by mercaptoethanol is investigated. UV‐vis spectrophotometry and electron microscopy are used, respectively, to determine the kinetics and time‐dependent structural changes associated with formation of the 1D nanoparticle superstructures between 5 and 50 °C. The results indicate that assembly of the plasmonic nanoparticle networks is extremely sensitive to changes in temperature. Formation of the nanoparticle chains is optimized at 25–30 °C and follows first order kinetics with increasing reaction rates attained for higher initial nanoparticle concentrations. Below 25 °C, plasmonic nanoparticle networks are produced but at a considerably reduced rate. In contrast, above 30 °C, short‐chain networks form rapidly but the process is superseded by a secondary mechanism that limits chain growth and produces small fragments and isolated Au nanoparticles. The changes in assembly behavior are attributed to the temperature‐dependent ordering and disordering of mercaptoethanol molecules associated with the gold nanoparticle surface. The results provide a general mechanistic model for the self‐assembly of metallic nanoparticles based on ligand‐induced electric dipolar interactions, which are globally under thermodynamic control but sensitive to kinetic aspects. It is also shown that the dipolar mechanism can be further exploited to introduce larger nanoparticles as topological dopants that reside specifically at branching points or termini in the self‐assembled 1D nanoparticle networks.  相似文献   

11.
A new type of thin‐film electrode that does not utilize conducting polymers or traditional metal or chemical vapor deposition methods has been developed to create ultrathin flexible electrodes for fuel cells. Using the layer‐by‐layer (LbL) technique, carbon–polymer electrodes have been assembled from polyelectrolytes and stable carbon colloidal dispersions. Thin‐film LbL polyelectrolyte–carbon electrodes (LPCEs) have been successfully assembled atop both metallic and non‐metallic, porous and non‐porous substrates. These electrodes exhibit high electronic conductivities of 2–4 S cm–1, and their porous structure provides ionic conductivities in the range of 10–4 to 10–3 S cm–1. The electrodes show remarkable stability towards oxidizing, acidic, or delaminating basic solutions. In particular, an LPCE consisting of poly(diallyldimethyl ammonium chloride)/poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid)/carbon–platinum assembled on a porous stainless steel support yields an open‐circuit potential similar to that of a pure platinum electrode. With LbL carbon–polymer electrodes, the membrane‐electrode assembly (MEA) in a fuel cell can be made several times thinner, assume multiple geometries, and hence be more compact. The mechanism for LPCE deposition, electrode structure, and miniaturization will be presented and discussed, and demonstrations of the LbL electrodes in a traditional Nafion‐based proton fuel cell and the first demonstration of a thin‐film hydrogen–air “soft” fuel cell fully constructed using multilayer assembly are described.  相似文献   

12.
Layer‐by‐layer (LbL) self‐assembly is a versatile technique from which multi­component and stimuli‐responsive nanoscale drug‐carriers can be constructed. Despite the benefits of LbL assembly, the conventional synthetic approach for fabricating LbL nanoparticles requires numerous purification steps that limit scale, yield, efficiency, and potential for clinical translation. In this report, a generalizable method for increasing throughput with LbL assembly is described by using highly scalable, closed‐loop diafiltration to manage intermediate purification steps. This method facilitates highly controlled fabrication of diverse nanoscale LbL formulations smaller than 150 nm composed from solid‐polymer, mesoporous silica, and liposomal vesicles. The technique allows for the deposition of a broad range of polyelectrolytes that included native polysaccharides, linear polypeptides, and synthetic polymers. The cytotoxicity, shelf life, and long‐term storage of LbL nanoparticles produced using this approach are explored. It is found that LbL coated systems can be reliably and rapidly produced: specifically, LbL‐modified liposomes could be lyophilized, stored at room temperature, and reconstituted without compromising drug encapsulation or particle stability, thereby facilitating large scale applications. Overall, this report describes an accessible approach that significantly improves the throughput of nanoscale LbL drug‐carriers that show low toxicity and are amenable to clinically relevant storage conditions.  相似文献   

13.
A general polyelectrolyte‐mediated self‐assembly technique is adopted to prepare multifunctional mesoporous nanostructures as an effective biological bimodal imaging probe and magnetically targeted anticancer drug (doxorubicin) delivery systems (DDSs). A positively charged polyelectrolyte (PAH) and negatively charged fluorescent quantum dots (QDs) are successfully assembled onto the surface of ellipsoidal Fe3O4@SiO2@mSiO2 composite nanostructures to combine the merits of tunable fluorescent/magnetic properties, mesoporous nanostructures for drug loading, and the uniform ellipsoidal morphology for enhanced uptake by cancer cells. The resultant nanoellipsoids are homogeneously coated with four layers of PAH/QDs, with an additional PAH layer to make the ellipsoidal surface positively charged. This acts to enhance cellular uptake, which is driven by electrostatic interactions between the positive nanoparticle surface and the negative cell surface. The high biocompatibility of the achieved multifunctional nanoellipsoids is demonstrated by a cell‐cytotoxicity assay, hemolyticity against human red blood cells, and coagulation evaluation of fresh human blood plasma after exposure to the nanoparticles. Moreover, confocal microscopy and bio‐TEM observations show that the cell uptake of nanocarriers is dose‐dependent, and the nanoparticles accumulate mostly in the cytoplasm. The excellent capability of the nanocarriers as contrast agents for MRI is demonstrated by the relatively high r2 value (143 mM?1s?1) and preliminary in vivo characterization. More importantly, the doxorubicin‐loaded DDSs show higher cytotoxicity than the free doxorubicin drug as contributed by the intracellular release pathway of doxorubicin from the DDSs, indicating the potential application of the obtained multifunctional mesoporous nanoellipsoids as highly effective bimodal imaging probes and DDSs for cancer diagnosis and chemotherapy, simultaneously.  相似文献   

14.
The charge separation efficiency of water oxidation photoanodes is modulated by depositing polyelectrolyte multilayers on their surface using layer‐by‐layer (LbL) assembly. The deposition of the polyelectrolyte multilayers of cationic poly(diallyldimethylammonium chloride) and anionic poly(styrene sulfonate) induces the formation of interfacial dipole layers on the surface of Fe2O3 and TiO2 photoanodes. The charge separation efficiency is modulated by tuning their magnitude and direction, which in turn can be achieved by controlling the number of bilayers and type of terminal polyelectrolytes, respectively. Specifically, the multilayers terminated with anionic poly(styrene sulfonate) exhibit a higher charge separation efficiency than those with cationic counterparts. Furthermore, the deposition of water oxidation molecular catalysts on top of interfacial dipole layers enables more efficient photoelectrochemical water oxidation. The approach exploiting the polyelectrolyte multilayers for improving the charge separation efficiency is effective regardless of pH and types of photoelectrodes. Considering the versatility of the LbL assembly, it is anticipated that this study will provide insights for the design and fabrication of efficient photoelectrodes.  相似文献   

15.
Freely suspended nanocomposite layer‐by‐layer (LbL) nanomembranes composed of a central layer of gold nanoparticles sandwiched between polyelectrolyte multilayers are fabricated via spin‐assisted LbL assembly. The diameter of the circular membranes is varied from 150 to 600 μm and the thickness is kept within the range of 25–70 nm. The micro‐ and nanomechanical properties of these membranes are studied using a combination of resonance‐frequency and bulging tests, and point‐load nanodeflection experiments. Our results suggest that these freely suspended nanomembranes, with a Young's modulus of 5–10 GPa are very robust and can sustain multiple significant deformations. They are very sensitive to minor variations in pressure, surpassing ordinary semiconductor and metal membranes by three to four orders of magnitude and therefore have potential applications as pressure and acoustic microsensors.  相似文献   

16.
Polyelectrolyte‐multilayer microcapsules are made by layer‐by‐layer (LbL) assembly of oppositely charged polyelectrolytes onto sacrificial colloidal particles, followed by core removal. In this paper, contact‐killing polyelectrolyte microcapsules are prepared based solely on polysaccharides. To this end, water‐soluble quaternized chitosan (QCHI) with varying degrees of substitution (DS) and hyaluronic acid (HA) are assembled into thin films. The quaternary ammonium groups are selectively grafted on the primary amine group of chitosan by exploiting its reaction with glycidyltrimethylammonium chloride (GTMAC) under homogeneous aqueous acidic conditions. The morphology of the capsules is closely dependent on the DS of the quaternized chitosan derivatives, which suggests differences in their complexation with HA. The DS is also a key parameter to control the antibacterial activity of QCHI against Escherichia Coli (E. coli). Thus, capsules containing the QCHI derivative with the highest DS are shown to be the most efficient to kill E. coli while retaining their biocompatibility toward myoblast cells, which suggests their potential as drug carriers able to combat bacterial infections.  相似文献   

17.
To obtain more biologically relevant data there is a growing interest in the use of living cells for assaying the biological activity of unknown chemical compounds. Density ‘multiplex’ cell‐based assays, where different cell types are mixed in one well and simultaneously investigated upon exposure to a certain compound are beginning to emerge. To be able to identify the cells they should be attached to microscopic carriers that are encoded. This paper investigates how digitally encoded microparticles can be loaded with cells while keeping the digital code in the microcarriers readable. It turns out that coating the surface of the encoded microcarriers with polyelectrolytes using the layer‐by‐layer (LbL) approach provides the microcarriers with a ‘highly functional’ surface. The polyelectrolyte layer allows the growth of the cells, allows the orientation of the cell loaded microcarriers in a magnetic field, and does not hamper the reading of the code. It has further been shown that the cells growing on the polyelectrolyte layer can become transduced by adenoviral particles hosted by the polyelectrolyte layer. It is concluded that the digitally encoded microparticles are promising materials for use in biomedical and pharmaceutical in‐vitro research where cells are used as tools.  相似文献   

18.
A study of the micromechanical properties of layer‐by‐layer nanomembranes composed of a center layer of gold nanoparticles is reported by Tsukruk and co‐workers on p. 771. The micro‐ and nanomechanical properties of these membranes are measured using a combination of resonance‐frequency tests, bulging tests, and point‐load nanodeflection experiments. These freely suspended nanomembranes (right) with an elastic modulus of 5–10 GPa are very robust and can sustain multiple significant deformations (left, image obtained by B. Rybak and P. Kladitis). They are sensitive to variations in pressure and therefore have potential applications in pressure and acoustic sensors. Freely suspended nanocomposite layer‐by‐layer (LbL) nanomembranes composed of a central layer of gold nanoparticles sandwiched between polyelectrolyte multilayers are fabricated via spin‐assisted LbL assembly. The diameter of the circular membranes is varied from 150 to 600 μm and the thickness is kept within the range of 25–70 nm. The micro‐ and nanomechanical properties of these membranes are studied using a combination of resonance‐frequency and bulging tests, and point‐load nanodeflection experiments. Our results suggest that these freely suspended nanomembranes, with a Young's modulus of 5–10 GPa are very robust and can sustain multiple significant deformations. They are very sensitive to minor variations in pressure, surpassing ordinary semiconductor and metal membranes by three to four orders of magnitude and therefore have potential applications as pressure and acoustic microsensors.  相似文献   

19.
Metal nanoparticles are frequently employed for the colorimetric detection of specific target molecules using an aggregation‐induced shift of the localized surface plasmon resonance. However, metal nanoparticles dispersed in bulk solutions are prone to be contaminated by adhesive molecules and the dispersions tend to be diluted by sample fluids, restricting direct application to unpurified pristine samples. Here, a versatile capsule sensor platform is proposed that can encompass a variety of different types of nanoparticle‐based sensors. The capsule sensors are microfluidically prepared to obtain close control over their dimensions and composition. Their aqueous cores that are loaded with sensing materials are surrounded by an ultrathin inner oil shell and an outer hydrogel shell. The hydrogel shell prevents the diffusion of large adhesive molecules into the core, thereby preventing contamination of the sensing materials. The oil shell is selectively permeable such that it further improves the sensor selectivity. Importantly, these shells confine the sensing materials and prevent them from being diluted, securing a consistent optical property. Moreover, the capsule‐based sensors display a higher sensitivity than bulk dispersions because a smaller amount of sensing materials is used. The power of nanoparticle‐loaded capsule sensors is demonstrated using lysine‐coated gold nanoparticles to detect mercury ions.  相似文献   

20.
Using siRNA therapeutics to treat hematologic malignancies has been unsuccessful because blood cancer cells exhibit remarkable resistance to standard transfection methods. Herein, the successful delivery of siRNA therapeutics with a dual‐targeted, layer‐by‐layer nanoparticle (LbL‐NP) is reported. The LbL‐NP protects siRNA from nucleases in the bloodstream by embedding it within polyelectrolyte layers that coat a polymeric core. The outermost layer consists of hyaluronic acid (a CD44‐ligand) covalently conjugated to CD20 antibodies. The CD20/CD44 dual‐targeting outer layer provides precise binding to blood cancer cells, followed by receptor‐mediated endocytosis of the LbL‐NP. This siRNA delivery platform is used to silence B‐cell lymphoma 2 (BCL‐2), a pro‐survival protein, in vitro and in vivo. The dual‐targeting approach significantly enhances internalization of BCL‐2 siRNA in lymphoma and leukemia cells, which leads to significant downregulation of BCL‐2 expression. Systemic administration of the dual‐targeted, siRNA‐loaded nanoparticle induces apoptosis and hampers proliferation of blood cancer cells, both in cell culture and in orthotopic non‐Hodgkin's lymphoma animal models. These results provide the basis for approaches to targeting blood‐borne cancers and other diseases and suggest that LbL nanoassemblies are a promising approach for delivering therapeutic siRNA to hematopoetic cell types that are known to evade transfection by other means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号