首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shunt active power filters have been widely used for power quality improvement. With the advancement in artificial intelligence techniques, the applications of fuzzy logic‐based control systems have increased manifolds. This paper proposes a reduced rule fuzzy logic controller (FLC) in the voltage control loop of a shunt active power filter (APF), which is approximating a conventional large rule FLC. The difference between the controlled outputs of two controllers is compensated by proposed compensating factors. The dynamic response and harmonic compensation performance of proposed 4‐rule approximated fuzzy logic controller (AFLC) is compared with 25‐rule FLC. A three‐phase shunt APF is used for harmonic and reactive power compensation. The proposed scheme is tested with randomly varying single and multiple non‐linear loads. The simulation results presented under transient and steady‐state conditions confirm that the proposed 4‐rule AFLC efficiently approximates the 25‐rule FLC. The proposed control methodology takes less computational time and computational memory as the numbers of rules are reduced significantly.  相似文献   

2.
It is proved in the paper that practically all known higher‐order sliding controllers can be combined with recently developed 2‐sliding‐mode‐based differentiators yielding universal output‐feedback Single‐Input‐Single‐Output (SISO) controllers. These controllers can be applied at least locally, whenever the system relative degree is known. The convergence is global, provided the system relative degree is permanent and few boundedness restrictions hold. No detailed mathematical model of the system is needed. The proposed output‐feedback controller provides for the exact finite‐time‐convergent output tracking of real‐time‐given smooth signals if the output measurements are exact. Otherwise the tracking accuracy is proportional to the magnitude of the sampling noise. The control may be made arbitrarily smooth, thereby removing the chattering effect. The theoretical results are illustrated by computer simulation.  相似文献   

3.
This paper considers the leader‐following synchronization problem of nonlinear multi‐agent systems with unmeasurable states in the presence of input saturation. Each follower is governed by a class of strict‐feedback systems with unknown nonlinearities and the information of the leader can be accessed by only a small fraction of followers. An auxiliary system is introduced and its states are used to design the cooperative controllers for counteracting the effect of input saturation. By using fuzzy logic systems to approximate the unknown nonlinearities, local adaptive fuzzy observers are designed to estimate the unmeasurable states. Dynamic surface control (DSC) is employed to design distributed adaptive fuzzy output feedback controllers. The developed controllers guarantee that the outputs of all followers synchronize to that of the leader under directed communication graphs. Based on Lyapunov stability theory, it is proved that all signals in the closed‐loop systems are semiglobally uniformly ultimately bounded (SGUUB), and the tracking error converges to a small neighborhood of the origin. An example is provided to show the effectiveness of the proposed control approach.  相似文献   

4.
In this work, we study the problem of the digital implementation of continuous‐time solutions to the trajectory tracking control problem for nonlinear systems. We exhibit an example that shows that, in general, no proper behavior of the tracking error can be expected when these solutions are implemented via the Sampling and Zero Order Hold technique. Inspired in some constructions developed in the context of Positional Games, we present a sampled‐data controller that, based on a continuous‐time solution of the tracking problem, assures semiglobal practical stability of the tracking error, with final error arbitrarily small if we choose a suitable sampling period. The controller is robust with respect to small external disturbances and small errors in the measurements.  相似文献   

5.
A self‐optimizing, high precision sampling fuzzy logic controller for keeping a ball mill circuit working stably and efficiently is proposed in this paper. The controller is based on fuzzy logic control strategy, and a fuzzy interpolation algorithm is presented to improve the control precision. The final output of the controller is calculated through the interpolation calculation of the observation and its neighboring antecedents, and the interpolation weight coefficients are obtained according to a fuzzy inference algorithm. In the proposed controller, the sampling control strategy is used to deal with a large delay time and a controller set value which can be adjusted by a self‐optimizing algorithm, which can overcome the time‐varying characteristic. Simulation results verify that the controller can control the ball mill circuit effectively and have higher control quality. Field service results also verify that the controller can successfully optimize the control of ball mill circuit. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

6.
This paper addresses the problem of self‐triggered state‐feedback control for linear plants under bounded disturbances. In a self‐triggered scenario, the controller is allowed to choose when the next sampling time should occur and does so based on the current sampled state and on a priori knowledge about the plant. Besides comparing some existing approaches to self‐triggered control available in the literature, we propose a new self‐triggered control strategy that allows for the consideration of model‐based controllers, a class of controllers that includes as a special case static controllers with a zero‐order hold of the last state measurement. We show that our proposed control strategy renders the solutions of the closed‐loop system globally uniformly ultimately bounded. We further show that there exists a minimum time interval between sampling times and provide a method for computing a lower bound for it. An illustrative example with numerical results is included in order to compare the existing strategies and the proposed one. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates a global sampled‐data output feedback stabilization problem for a class of switched stochastic nonlinear systems whose output and system mode are available only at the sampling instants. An observer is designed to estimate the unmeasurable state and thus a sampled‐data controller is constructed with the sampled estimated state. As a distinctive feature, a merging virtual switching signal is introduced to describe the asynchronous switching generated by detecting the system mode via a sampler. By choosing an appropriate piecewise Lyapunov function, it is proved that the proposed sampled‐data controller with allowable sampling period can stabilize the considered switched stochastic nonlinear systems under an average dwell‐time condition. Finally, two simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

8.
In this paper, the authors address the tracking problem for non‐holonomic systems in chained form with target signals that may exponentially decay to zero. By introducing a time‐varying co‐ordinate transformation and using the cascade‐design approach, smooth time‐varying controllers are constructed, which render the tracking‐error dynamics globally ??‐exponentially stable. The result shows that the popular condition of persistent excitation or not converging to zero for the reference signals is not necessary even for the globally ??‐exponential tracking of the chained‐form system. The effectiveness of the proposed controller is validated by simulation of two benchmark mechanical systems under non‐holonomic constraints. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with the problem of fault‐tolerant control (FTC) for a class of nonlinear uncertain systems against actuator faults using adaptive logic‐based switching control method. The uncertainties under consideration are assumed to be dominated by a bounding system which is linear in growth in the unmeasurable states but can be a continuous function of the system output, with unknown growth rates. Several types of common actuator faults, e.g., bias, loss‐of‐effectiveness, stuck and hard‐over faults are integrated by a unified fault model. By utilizing a novel adaptive logic‐based switching control scheme, the actuator faults can be detected and automatically accommodated by switching from the stuck actuator to the healthy or even partly losing‐effectiveness one with bias, in the presence of large parametric uncertainty. In particular, two switching logics for updating the gain in the output feedback controllers are designed to ensure the global stability of the nominal (fault‐free) system and the boundedness of all closed‐loop signals of the faulty system, respectively. Two simulation examples of an aircraft wing model and a single‐link flexible‐joint robot are given to show the effectiveness of the proposed FTC controller. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a controller design method for fuzzy dynamic systems based on a piecewise smooth Lyapunov function. The basic idea of the proposed approach is to construct controllers for the fuzzy dynamic systems in such a way that a piecewise continuous Lyapunov function can be used to establish the global stability with Hinfinity performance of the resulting closed loop fuzzy control systems. It is shown that the control law can be obtained by solving a set of Linear Matrix Inequalities (LMI) that is numerically feasible with commercially available software. An example is given to illustrate the application of the proposed method.  相似文献   

11.
A novel fuzzy‐neuron intelligent coordination control method for a unit power plant is proposed in this paper. Based on the complementarity between a fuzzy controller and a neuron model‐free controller, a fuzzy‐neuron compound control method for Single‐In‐Single‐Out (SISO) systems is presented to enhance the robustness and precision of the control system. In this new intelligent control system, the fuzzy logic controller is used to speed up the transient response, and the adaptive neuron controller is used to eliminate the steady state error of the system. For the multivariable control system, the multivariable controlled plant is decoupled statically, and then the fuzzy‐neuron intelligent controller is used in each input‐output path of the decoupled plant. To the complex unit power plant, the structure of this new intelligent coordination controller is very simple and the simulation test results show that good performances such as strong robustness and adaptability, etc. are obtained. One of the outstanding advantages is that the proposed method can separate the controller design procedure and control signals from the plant model. It can be used in practice very conveniently.  相似文献   

12.
In this paper, a novel decentralized robust adaptive fuzzy control scheme is proposed for a class of large‐scale multiple‐input multiple‐output uncertain nonlinear systems. By virtue of fuzzy logic systems and the regularized inverse matrix, the decentralized robust indirect adaptive fuzzy controller is developed such that the controller singularity problem is addressed under a united design framework; no a priori knowledge of the bounds on lumped uncertainties are being required. The closed‐loop large‐scale system is proved to be asymptotically stable. Simulation results confirmed the validity of the approach presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes a novel adaptive backstepping control method for parametric strict‐feedback nonlinear systems with event‐sampled state and input vectors via impulsive dynamical systems tools. In the design procedure, both the parameter estimator and the controller are aperiodically updated only at the event‐sampled instants. An adaptive event sampling condition is designed to determine the event sampling instants. A positive lower bound on the minimal intersample time is provided to avoid Zeno behavior. The closed‐loop stability of the adaptive event‐triggered control system is rigorously proved via Lyapunov analysis for both the continuous and jump dynamics. Compared with the periodic updates in the traditional adaptive backstepping design, the proposed method can reduce the computation and the transmission cost. The effectiveness of the proposed method is illustrated using 2 simulation examples.  相似文献   

14.
Stabilization rates of power‐integrator chains are easily regulated. It provides a framework for acceleration of uncertain multiple‐input–multiple‐output dynamic systems of known relative degrees (RDs). The desired rate of the output stabilization (sliding‐mode control) is ensured for an uncertain system if its RD is known, and a rough approximation of the high‐frequency gain matrix is available. The uniformly bounded convergence time (fixed‐time stability) is obtained as a particular case. The control can be kept continuous everywhere except the sliding‐mode set if the partial RDs are equal. Similarly, uncertain smooth systems of complete multiple‐input–multiple‐output RDs (ie, lacking zero dynamics) are stabilized by continuous control at their equilibria in finite time and are accelerated. Output‐feedback controllers are constructed. Computer simulation demonstrates the efficiency of the proposed approach.  相似文献   

15.
基于T-S模型的自适应模糊广义预测控制   总被引:1,自引:0,他引:1  
对一类非线性系统,利用一种基于模糊规则的快速模糊辨识方法建立起系统的T—S模型,并基于该模型应用局部递推最小二乘方法根据采样值对模型参数进行在线修正,根据系统动态线性化模型采取广义预测控制策略,从而实现了基于T—S模糊模型的非线性系统自适应模糊预潮控制。与以往的模糊广义预测控制算法相比,此方法简单,而且较大地减少计算量,适合于在线控制。通过仿真研究验证所提方法的有效性。  相似文献   

16.
基于基因算法的多变量模糊控制器的设计*   总被引:18,自引:1,他引:18  
本文提出了一种通用的模糊控制器的设计方法,这种方法运用基因算法进行寻优,具有设计速度快、人工干预少,可获得一个基于一定性能指标的次优或最优模糊控制器。它可以对多输入多输出(MIMO)系统进行设计,不需要被控对象的精确数学模型,本文最后以二级倒立摆系统为控制对象给出了一个设计实例和实际控制的结果。  相似文献   

17.
The fuzzy model predictive control (FMPC) problem is studied for a class of discrete‐time Takagi‐Sugeno (T‐S) fuzzy systems with hard constraints. In order to improve the network utilization as well as reduce the transmission burden and avoid data collisions, a novel event‐triggering–based try‐once‐discard (TOD) protocol is developed for networks between sensors and the controller. Moreover, due to practical difficulties in obtaining measurements, the dynamic output‐feedback method is introduced to replace the traditional state feedback method for addressing the FMPC problem. Our aim is to design a series of controllers in the framework of dynamic output‐feedback FMPC for T‐S fuzzy systems so as to find a good balance between the system performance and the time efficiency. Considering nonlinearities in the context of the T‐S fuzzy model, a “min‐max” strategy is put forward to formulate an online optimization problem over the infinite‐time horizon. Then, in light of the Lyapunov‐like function approach that fully involves the properties of the T‐S fuzzy model and the proposed protocol, sufficient conditions are derived to guarantee the input‐to‐state stability of the underlying system. In order to handle the side effects of the proposed event‐triggering–based TOD protocol, its impacts are fully taken into consideration by virtue of the S‐procedure technique and the quadratic boundedness methodology. Furthermore, a certain upper bound of the objective is provided to construct an auxiliary online problem for the solvability, and the corresponding algorithm is given to find the desired controllers. Finally, two numerical examples are used to demonstrate the validity of proposed methods.  相似文献   

18.
This paper presents a kind of controller synthesis method for fuzzy dynamic systems based on a piecewise smooth Lyapunov function. The basic idea of the proposed approach is to construct controllers for the fuzzy dynamic systems in such a way that a piecewise continuous Lyapunov function can be used to establish the global stability with H/sub /spl infin// performance of the resulting closed loop fuzzy control systems. It is shown that the control laws can be obtained by solving a set of linear matrix inequalities that is numerically feasible with commercially available software. An example is given to illustrate the application of the proposed methods.  相似文献   

19.
This paper investigates the problem of sampled‐data controller design for a class of lower‐triangular systems in the p‐normal form (0<p<1). A multirate digital feedback control scheme is proposed to achieve the global strong stabilization of the sampled‐data closed‐loop system under some assumptions. In the design of the controller, the input‐Lyapunov matching strategy and multirate control approach are combined to obtain better stabilizing performance. Unlike the design method based on the approximate discrete‐time model, our controller is obtained from the exact discrete‐time equivalent model, which does not need to be computed completely. The approximate multirate digital controllers are proved to be effective in the practical implementation. It is shown that, compared with the emulated control scheme, our controller may provide faster decrease of Lyapunov function for each subsystem. This will lead to allow large sampling periods. An illustrative example is provided to verify the effectiveness of the proposed control scheme.  相似文献   

20.
The present paper proposes a novel multi‐objective robust fuzzy fractional order proportional–integral–derivative (PID) controller design for nonlinear hydraulic turbine governing system (HTGS) by using evolutionary computation techniques. The fuzzy fractional order PID (FOPID) controller takes closed loop error and its fractional derivative as inputs and performs fuzzy logic operations. Then, it produces the output through the fractional order integrator. The predominant advantages of the proposed controller are its capability to handle complex nonlinear processes like HTGS in heuristic manner, due to fuzzy incorporation and extending an additional flexibility in tuning the order of fractional derivative/integral terms to enhance the closed loop performance. The present work formulates the optimal tuning problem of fuzzy FOPID controller for HTGS as a multi‐objective one instead of a traditional single‐objective one towards satisfying the conflicting criteria such as less settling time and minimum damped oscillations simultaneously to ensure the improved dynamic performance of HTGS. The multi‐objective evolutionary computation techniques such as non‐dominated sorting genetic algorithm‐II (NSGA‐II) and modified NSGA‐II have been utilized to find the optimal input/output scaling factors of the proposed controller along with the order of fractional derivative/integral terms for HTGS system under no load and load turbulence conditions. The performance of the proposed fuzzy FOPID controller is compared with PID and FOPID controllers. The simulations have been conducted to test the tracking capability and robust performance of HTGS during dynamic set point changes for a wide range of operating conditions and model parameter variations, respectively. The proposed robust fuzzy FOPID controller has ensured better fitness value and better time domain specifications than the PID and FOPID controllers, during optimization towards satisfying the conflicting objectives such as less settling time and minimum damped oscillations simultaneously, due to its special inheritance of fuzzy and FOPID properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号