首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of using ion conducting membranes (50–150 μm thick) for gating low‐voltage (1 V) organic field‐effect transistors (OFETs) is attractive due to its low‐cost and large‐area manufacturing capabilities. Furthermore, the membranes can be tailor‐made to be ion conducting in any desired way or pattern. For the electrolyte gated OFETs in general, the key to low‐voltage operation is the electrolyte “insulator” (the membrane) that provides a high effective capacitance due to ionic polarization within the insulator. Hydrous ion conducting membranes are easy to process and readily available. However, the role of the water in combination with the polymeric semiconductor has not yet been fully clarified. In this work electrical and optical techniques are utilized to carefully monitor the electrolyte/semiconductor interface in an ion conducting membrane based OFET. The main findings are that 1) moisture plays a major part in the transistor operation and careful control of both the ambient atmosphere and the potential differences between the electrodes are required for stable and consistent device behavior, 2) the obtained maximum effective capacitance (5 μF cm?2) of the membrane suggests that the electric double layer is distributed over a broad region within the polyelectrolyte, and 3) electromodulation spectroscopy combined with current–voltage characteristics provide a method to determine the threshold gate voltage from an electrostatic field‐effect doping to a region of (irreversible) electrochemical perturbation of the polymeric semiconductor.  相似文献   

2.
Contact resistance limits the performance of organic field‐effect transistors, especially those based on high‐mobility semiconductors. Despite intensive research, the nature of this phenomenon is not well understood and mitigation strategies are largely limited to complex schemes often involving co‐evaporated doped interlayers. Here, this study shows that solution self‐assembly of a polyelectrolyte monolayer on a metal electrode can induce carrier doping at the contact of an organic semiconductor overlayer, which can be augmented by dopant ion‐exchange in the monolayer, to provide ohmic contacts for both p‐ and n‐type organic field‐effect transistors. The resultant 2D‐doped profile at the semiconductor interface is furthermore self‐aligned to the contact and stabilized against counterion migration. This study shows that Coulomb potential disordering by the polyelectrolyte shifts the semiconductor density‐of‐states into the gap to promote extrinsic doping and cascade carrier injection. Contact resistivities of the order of 0.1–1 Ω cm2 or less have been attained. This will likely also provide a platform for ohmic injection into other advanced semiconductors, including 2D and other nanomaterials.  相似文献   

3.
With the increasing importance of electronic textiles as an ideal platform for wearable electronic devices, requirements for the development of functional electronic fibers with multilayered structures are increasing. In this paper, metal–polymer insulator–organic semiconductor (MIS) coaxial microfibers using the self‐organization of organic semiconductor:insulating polymer blends for weavable, fibriform organic field‐effect transistors (FETs) are demonstrated. A holistic process for MIS coaxial microfiber fabrication, including surface modification of gold microfiber thin‐film coating on the microfiber using a die‐coating system, and the self‐organization of organic semiconductor–insulator polymer blend is presented. Vertical phase‐separation of the organic semiconductor:insulating polymer blend film wrapping the metal microfibers provides a coaxial bilayer structure of gate dielectric (inside) and organic semiconductor (outside) with intimate interfacial contact. It is determined that the fibriform FETs based on MIS coaxial microfiber exhibit good charge carrier mobilities that approach the values of typical devices with planar substrate. It additionally exhibits electrical property uniformity over the entire fiber surface and improved bending durability. Fibriform organic FET embedded in a textile is demonstrated by weaving MIS coaxial microfibers with cotton and conducting threads, which verifies the feasibility of MIS coaxial microfiber for use in electronic textile applications.  相似文献   

4.
Self‐assembled monolayers (SAMs) are molecular assemblies that spontaneously form on an appropriate substrate dipped into a solution of an active surfactant in an organic solvent. Organic field‐effect transistors are described, built on an SAM made of bifunctional molecules comprising a short alkyl chain linked to an oligothiophene moiety that acts as the active semiconductor. The SAM is deposited on a thin oxide layer (alumina or silica) that serves as a gate insulator. Platinum–titanium source and drain electrodes (either top‐ or bottom‐contact configuration) are patterned by using electron‐beam (e‐beam) lithography, with a channel length ranging between 20 and 1000 nm. In most cases, ill‐defined current–voltage (I–V) curves are recorded, attributed to a poor electrical contact between platinum and the oligothiophene moiety. However, a few devices offer well‐defined curves with a clear saturation, thus allowing an estimation of the mobility: 0.0035 cm2 V–1 s–1 for quaterthiophene and 8 × 10–4 cm2 V–1 s–1 for terthiophene. In the first case, the on–off ratio reaches 1800 at a gate voltage of –2 V. Interestingly, the device operates at room temperature and very low bias, which may open the way to applications where low consumption is required.  相似文献   

5.
Printing semiconductor devices under ambient atmospheric conditions is a promising method for the large‐area, low‐cost fabrication of flexible electronic products. However, processes conducted at temperatures greater than 150 °C are typically used for printed electronics, which prevents the use of common flexible substrates because of the distortion caused by heat. The present report describes a method for the room‐temperature printing of electronics, which allows thin‐film electronic devices to be printed at room temperature without the application of heat. The development of π‐junction gold nanoparticles as the electrode material permits the room‐temperature deposition of a conductive metal layer. Room‐temperature patterning methods are also developed for the Au ink electrodes and an active organic semiconductor layer, which enables the fabrication of organic thin‐film transistors through room‐temperature printing. The transistor devices printed at room temperature exhibit average field‐effect mobilities of 7.9 and 2.5 cm2 V?1 s?1 on plastic and paper substrates, respectively. These results suggest that this fabrication method is very promising as a core technology for low‐cost and high‐performance printed electronics.  相似文献   

6.
Measuring the anisotropy of the field‐effect mobility provides insight into the correlation between molecular packing and charge transport in organic semiconductor materials. Single‐crystal field‐effect transistors are ideal tools to study intrinsic charge transport because of their high crystalline order and chemical purity. The anisotropy of the field effect mobility in organic single crystals has previously been studied by lamination of macroscopically large single crystals onto device substrates. Here, a technique is presented that allows probing of the mobility anisotropy even though only small crystals are available. Crystals of a soluble oligothiophene derivative are grown in bromobenzene and drop‐cast onto substrates containing arrays of bottom‐contact gold electrodes. Mobility anisotropy curves are recorded by measuring numerous single crystal transistor devices. Surprisingly, two mobility maxima occur at azimuths corresponding to both axes of the rectangular cyclohexyl‐substituted quaterthiophene (CH4T) in‐plane unit cell, in contrast to the expected tensorial behavior of the field effect mobility.  相似文献   

7.
The relationship between the performance characteristics of organic field‐effect transistors (OFETs) with 2,5‐bis(4‐biphenylyl)bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n‐channel, ambipolar, and p‐channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the heterojunction effect, which also leads to an evolution of the field‐effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field‐effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.  相似文献   

8.
Dopants, i.e., electronically active impurities, are added to organic semiconductor materials to control the material's Fermi level and conductivity, to improve injection at the device contacts, or to fill trap states in the active device layers and interfaces. In contrast to bulk doping as achieved by blending or co‐deposition of dopant and semiconductor, surface doping has a lower propensity to introduce additional traps or scattering centers or to even alter the layer morphology relative to the undoped active material layers. In this study, the electrical effects of a very simple, post‐device‐fabrication surface doping process involving various amine group–containing alkoxysilanes on the performance of organic field‐effect transistors (OFETs) made from the well‐known n‐type materials PTCDI‐C8 and N2200 are researched. It is demonstrated that OFETs doped in such a way generally show enhanced characteristics (up to 10 times mobility increase and a significant reduction in threshold voltage) without any adverse effects on the devices' on/off ratio. It is also shown that the efficiency of the doping process is linked to the number of amine groups.  相似文献   

9.
Electron injection from the source–drain electrodes limits the performance of many n‐type organic field‐effect transistors (OFETs), particularly those based on organic semiconductors with electron affinities less than 3.5 eV. Here, it is shown that modification of gold source–drain electrodes with an overlying solution‐deposited, patterned layer of an n‐type metal oxide such as zinc oxide (ZnO) provides an efficient electron‐injecting contact, which avoids the use of unstable low‐work‐function metals and is compatible with high‐resolution patterning techniques such as photolithography. Ambipolar light‐emitting field‐effect transistors (LEFETs) based on green‐light‐emitting poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) and blue‐light‐emitting poly(9,9‐dioctylfluorene) (F8) with electron‐injecting gold/ZnO and hole‐injecting gold electrodes show significantly lower electron threshold voltages and several orders of magnitude higher ambipolar currents, and hence light emission intensities, than devices with bare gold electrodes. Moreover, different solution‐deposited metal oxide injection layers are compared. By spin‐coating ZnO from a low‐temperature precursor, processing temperatures could be reduced to 150 °C. Ultraviolet photoemission spectroscopy (UPS) shows that the improvement in transistor performance is due to reduction of the electron injection barrier at the interface between the organic semiconductor and ZnO/Au compared to bare gold electrodes.  相似文献   

10.
Charge carrier mobility is an important characteristic of organic field‐effect transistors (OFETs) and other semiconductor devices. However, accurate mobility determination in FETs is frequently compromised by issues related to Schottky‐barrier contact resistance, that can be efficiently addressed by measurements in 4‐probe/Hall‐bar contact geometry. Here, it is shown that this technique, widely used in materials science, can still lead to significant mobility overestimation due to longitudinal channel shunting caused by voltage probes in 4‐probe structures. This effect is investigated numerically and experimentally in specially designed multiterminal OFETs based on optimized novel organic‐semiconductor blends and bulk single crystals. Numerical simulations reveal that 4‐probe FETs with long but narrow channels and wide voltage probes are especially prone to channel shunting, that can lead to mobilities overestimated by as much as 350%. In addition, the first Hall effect measurements in blended OFETs are reported and how Hall mobility can be affected by channel shunting is shown. As a solution to this problem, a numerical correction factor is introduced that can be used to obtain much more accurate experimental mobilities. This methodology is relevant to characterization of a variety of materials, including organic semiconductors, inorganic oxides, monolayer materials, as well as carbon nanotube and semiconductor nanocrystal arrays.  相似文献   

11.
By changing the packing motif of the conjugated cores and the thin‐film microstructures, unipolar organic semiconductors may be converted into ambipolar materials. A combined experimental and theoretical investigation is conducted on the thin‐film organic field‐effect transistors (OFETs) of three organic semiconductors that have the same conjugated core structure of s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione but with different n‐alkyl groups. The optical and electrochemical measurements suggest that the three organic semiconductors have very similar energy levels; however, their OFETs exhibit dramatically different transport characteristics. Transistors based on compound 1a or 1c show ambipolar transport properties, while those based on compound 1b show p‐type unipolar behavior. Specifically, compound 1c is characterized as a good ambipolar semiconductor with the highest electron mobility of 0.22 cm2 V?1 s?1 and the highest hole mobility of 0.03 cm2 V?1 s?1. Complementary metal oxide semiconductor (CMOS) inverters incorporated with compound 1c show sharp inversions with high gains above 50. Theoretical investigations reveal that the drastic difference in the transport properties of the three materials is due to the difference in their molecular packing and film microstructures.  相似文献   

12.
The mass production technique of gravure contact printing is used to fabricate state‐of‐the art polymer field‐effect transistors (FETs). Using plastic substrates with prepatterned indium tin oxide source and drain contacts as required for display applications, four different layers are sequentially gravure‐printed: the semiconductor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT), two insulator layers, and an Ag gate. A crosslinkable insulator and an Ag ink are developed which are both printable and highly robust. Printing in ambient and using this bottom‐contact/top‐gate geometry, an on/off ratio of >104 and a mobility of 0.04 cm2 V?1 s?1 are achieved. This rivals the best top‐gate polymer FETs fabricated with these materials. Printing using low concentration, low viscosity ink formulations, and different P3HT molecular weights is demonstrated. The printing speed of 40 m min?1 on a flexible polymer substrate demonstrates that very high‐volume, reel‐to‐reel production of organic electronic devices is possible.  相似文献   

13.
Simultaneous introduction of short‐range repulsive interactions between dissimilar colloidal particles and attractive interactions between like particles provides a general new route to fabricating self‐organizing bipolar devices. By identifying combinations of conductive device materials between which short‐range repulsive forces exist in the presence of an intervening liquid, electrochemical junctions can be self‐formed, as reported by Chiang and co‐workers on p. 379. The relationship between the performance characteristics of organic field‐effect transistors (OFETs) with 2,5‐bis(4‐biphenylyl)bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n‐channel, ambipolar, and p‐channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the heterojunction effect, which also leads to an evolution of the field‐effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field‐effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.  相似文献   

14.
Field‐effect transistors are the fundamental building blocks for electronic circuits and processors. Compared with inorganic transistors, organic field‐effect transistors (OFETs), featuring low cost, low weight, and easy fabrication, are attractive for large‐area flexible electronic devices. At present, OFETs with planar structures are widely investigated device structures in organic electronics and optoelectronics; however, they face enormous challenges in realizing large current density, fast operation speed, and outstanding mechanical flexibility for advancing their potential commercialized applications. In this context, vertical organic field‐effect transistors (VOFETs), composed of vertically stacked source/drain electrodes, could provide an effective approach for solving these questions due to their inherent small channel length and unique working principles. Since the first report of VOFETs in 2004, impressive progress has been witnessed in this field with the improvement of device performance. The aim of this review is to give a systematical summary of VOFETs with a special focus on device structure optimization for improved performance and potential applications demonstrated by VOFETs. An overview of the development of VOFETs along with current challenges and perspectives is also discussed. It is hoped that this review is timely and valuable for the next step in the rapid development of VOFETs and their related research fields.  相似文献   

15.
Organic thermoelectric materials, which can transform heat flow into electricity, have great potential for flexible, ultra‐low‐cost and large‐area thermoelectric applications. Despite rapid developments of organic thermoelectric materials, exploration and investigation of promising organic thermoelectric semiconductors still remain as a challenge. Here, the thermoelectric properties of several p‐ and n‐type organic semiconductors are investigated and studied, in particular, how the electric field modulations of the Seebeck coefficient in organic field‐effect transistors (OFETs) compare with the Seebeck coefficient in chemically doped films. The extracted relationship between the Seebeck coefficient (S) and electrical conductivity (σ) from the field‐effect transistor (FET) geometry is in good agreement with that of chemically doped films, enabling the investigation of the trade‐off relationship among σ, S, carrier concentration, and charging level. The results make OFETs an effective candidate for the thermoelectric studies of organic semiconductors.  相似文献   

16.
Organic field‐effect transistors (OFETs) are attractive for microelectronic applications such as sensor arrays or flexible displays, due to their adequate performance and relatively low production costs. Organic single‐crystal transistors have emerged as benchmark devices for studying the intrinsic charge‐transport properties in organic semiconductor materials. Conventional approaches for growing organic single crystals result in uncontrollable dimensions and the formation of extremely fragile crystals. In addition, the hand‐selection and placement of individual crystals on a device structure represents a severe limitation for producing arrays of single‐crystal transistors with high density and reasonable throughput. As a result, the application of organic single‐crystal transistors has been restricted to fundamental charge transport studies, with their commercial application not yet realizable. We recently reported a materials‐general method of fabricating large‐area arrays of patterned organic single crystals. Microcontact‐printed octadecyltriethoxysilane (OTS) film domains on smooth, inert substrates were found to act as preferential nucleation sites for single crystals for a broad range of organic semiconductor materials, such as pentacene, tetracene, rubrene and C60. In order to understand the underlying mechanism of preferential nucleation, the stamped OTS domains and the contact plane between the OTS domains and the organic crystals were inspected by atomic force microscopy (AFM) and optical microscopy. Our analysis suggests that crystals nucleate at the base of tall OTS pillars that form the significantly rough surface in the stamped domains. The selective nucleation inside the rough surface regions is discussed by means of a rate‐equation model of the growth process.  相似文献   

17.
A low contact resistance achieved on top‐gated organic field‐effect transistors by using coplanar and pseudo‐staggered device architectures, as well as the introduction of a dopant layer, is reported. The top‐gated structure effectively minimizes the access resistance from the contact to the channel region and the charge‐injection barrier is suppressed by doping of iron(III)trichloride at the metal/organic semiconductor interface. Compared with conventional bottom‐gated staggered devices, a remarkably low contact resistance of 0.1–0.2 kΩ cm is extracted from the top‐gated devices by the modified transfer line method. The top‐gated devices using thienoacene compound as a semiconductor exhibit a high average field‐effect mobility of 5.5–5.7 cm2 V?1 s?1 and an acceptable subthreshold swing of 0.23–0.24 V dec?1 without degradation in the on/off ratio of ≈109. Based on these experimental achievements, an optimal device structure for a high‐performance organic transistor is proposed.  相似文献   

18.
In organic electronics solution‐processable n‐channel field‐effect transistors (FETs) matching the parameters of the best p‐channel FETs are needed. Progress toward the fabrication of such devices is strongly impeded by a limited number of suitable organic semiconductors as well as by the lack of processing techniques that enable strict control of the supramolecular organization in the deposited layer. Here, the use of N,N′‐bis(4‐n‐butylphenyl)‐1,4,5,8‐naphthalenetetracarboxylic‐1,4:5,8‐bisimide (NBI‐4‐n‐BuPh) for fabrication of n‐channel FETs is described. The unidirectionally oriented crystalline layers of NBI‐4‐n‐BuPh are obtained by the zone‐casting method under ambient conditions. Due to the bottom‐contact, top‐gate configuration used, the gate dielectric, Parylene C, also acts as a protective layer. This, together with a sufficiently low LUMO level of NBI‐4‐n‐BuPh allows the fabrication and operation of these novel n‐channel transistors under ambient conditions. The high order of the NBI‐4‐n‐BuPh molecules in the zone‐cast layer and high purity of the gate dielectric yield good performance of the transistors.  相似文献   

19.
Here, a highly crystalline and self‐assembled 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pentacene) thin films formed by simple spin‐coating for the fabrication of high‐performance solution‐processed organic field‐effect transistors (OFETs) are reported. Rather than using semiconducting organic small‐molecule–insulating polymer blends for an active layer of an organic transistor, TIPS‐Pentacene organic semiconductor is separately self‐assembled on partially crosslinked poly‐4‐vinylphenol:poly(melamine‐co‐formaldehyde) (PVP:PMF) gate dielectric, which results in a vertically segregated semiconductor‐dielectric film with millimeter‐sized spherulite‐crystalline morphology of TIPS‐Pentacene. The structural and electrical properties of TIPS‐Pentacene/PVP:PMF films have been studied using a combination of polarized optical microscopy, atomic force microscopy, 2D‐grazing incidence wide‐angle X‐ray scattering, and secondary ion mass spectrometry. It is finally demonstrated a high‐performance OFETs with a maximum hole mobility of 3.40 cm2 V?1 s?1 which is, to the best of our knowledge, one of the highest mobility values for TIPS‐Pentacene OFETs fabricated using a conventional solution process. It is expected that this new deposition method would be applicable to other small molecular semiconductor–curable polymer gate dielectric systems for high‐performance organic electronic applications.  相似文献   

20.
In this study, polymer‐based organic field‐effect transistors (OFETs) that exhibit alignment‐induced mobility enhancement, very small device‐to‐device variation, and high operational stability are successfully fabricated by a simple coating method of semiconductor solutions on highly hydrophobic nanogrooved surfaces. The highly hydrophobic nanogrooved surfaces (water contact angle >110°) are effective at inducing unidirectional alignment of polymer backbone structures with edge‐on orientation and are advantageous for realizing high operational stability because of their water‐repellent nature. The dewetting of the semiconductor solution is a critical problem in the thin film formation on highly hydrophobic surfaces. Dewetting during spin coating is suppressed by surrounding the hydrophobic regions with hydrophilic ones under appropriate designs. For the OFET array with an aligned terrace‐phase active layer of poly(2,5‐bis(3‐hexadecylthiophene‐2‐yl)thieno[3,2‐b]thiophene), the hole mobility in the saturation regime of 30 OFETs with channel current direction parallel to the nanogrooves is 0.513 ± 0.018 cm2 V?1 s?1, which is approximately double that of the OFETs without nanogrooves, and the intrinsic operational stability is comparable to the operational stability of amorphous‐silicon field‐effect transistors. In other words, alignment‐induced mobility enhancement and high operational stability are successfully achieved with very small device‐to‐device variation. This coating method should be a promising means of fabricating high‐performance OFETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号