首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
A fully‐integrated penta‐band reconfigurable power amplifier (PA) is developed for handset Tx applications. The output structure of the proposed PA is composed of the fixed output matching network, power and frequency reconfigurable networks, and post‐PA distribution switches. In this work, a new reconfiguration technique is proposed for a specific band requiring power and frequency reconfiguration simultaneously. The design parameters for the proposed reconfiguration are newly derived and applied to the PA. To reduce the module size, the switches of reconfigurable output networks and post‐PA switches are integrated into a single IC using a 0.18 μm silicon‐on‐insulator CMOS process, and a compact size of 5 mm × 5 mm is thus achieved. The fabricated W‐CDMA PA module shows adjacent channel leakage ratios better than ?39 dBc up to the rated linear power and power‐added efficiencies of higher than around 38% at the maximum linear output power over all the bands. Efficiency degradation is limited to 2.5% to 3% compared to the single‐band reference PA.  相似文献   

2.
A Ka‐band 6‐W high power microwave monolithic integrated circuit amplifier for use in a very small aperture terminal system requiring high linearity is designed and fabricated using commercial 0.15‐μm GaAs pHEMT technology. This three‐stage amplifier, with a chip size of 22.1 mm2 can achieve a saturated output power of 6 W with a 21% power‐added efficiency and 15‐dB small signal gain over a frequency range of 28.5 GHz to 30.5 GHz. To obtain high linearity, the amplifier employs a class‐A bias and demonstrates an output third‐order intercept point of greater than 43.5 dBm over the above‐mentioned frequency range.  相似文献   

3.
Boron and phosphorus doping of crystalline silicon using a borosilicate glass (BSG) layer from plasma‐enhanced chemical vapor deposition (PECVD) and phosphorus oxychloride diffusion, respectively, is investigated. More specifically, the simultaneous and interacting diffusion of both elements through the BSG layer into the silicon substrate is characterized in depth. We show that an overlying BSG layer does not prevent the formation of a phosphorus emitter in silicon substrates during phosphorus diffusion. In fact, a BSG layer can even enhance the uptake of phosphorus into a silicon substrate compared with a bare substrate. From the understanding of the joint diffusion of boron and phosphorus through a BSG layer into a silicon substrate, a model is developed to illustrate the correlation of the concentration‐dependent diffusivities and the emerging diffusion profiles of boron and phosphorus. Here, the in‐diffusion of the dopants during diverse doping processes is reproduced by the use of known concentration dependences of the diffusivities in an integrated model. The simulated processes include a BSG drive‐in step in an inert and in a phosphorus‐containing atmosphere. Based on these findings, a PECVD BSG/capping layer structure is developed, which forms three different n++−, n+− and p+−doped regions during one single high temperature process. Such engineered structure can be used to produce back contact solar cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号