首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For an ideal solar cell, a maximum solar‐to‐electrical power conversion efficiency of just over 30% is achievable by harvesting UV to near IR photons up to 1.1 eV. Dye‐sensitized solar cells (DSCs) are, however, not ideal. Here, the electrical and optical losses in the dye‐sensitized system are reviewed, and the main losses in potential from the conversion of an absorbed photon at the optical bandgap of the sensitizer to the open‐circuit voltage generated by the solar cell are specifically highlighted. In the first instance, the maximum power conversion efficiency attainable as a function of optical bandgap of the sensitizer and the “loss‐in‐potential” from the optical bandgap to the open‐circuit voltage is estimated. For the best performing DSCs with current technology, the loss‐in‐potential is ~0.75 eV, which leads to a maximum power‐conversion efficiency of 13.4% with an optical bandgap of 1.48 eV (840 nm absorption onset). Means by which the loss‐in‐potential could be reduced to 0.4 eV are discussed; a maximum efficiency of 20.25% with an optical bandgap of 1.31 eV (940 nm) is possible if this is achieved.  相似文献   

2.
A new colorless electrolyte containing an organic redox couple, tetramethylthiourea (TMTU) and its oxidized dimer tetramethylformaminium disulfide dication ([TMFDS]2+), is applied to dye‐sensitized solar cells (DSCs). Advantages of this redox couple include its non‐corrosive nature, low cost, and easy handling. More impressively, it operates well with carbon electrodes. The DSCs fabricated with a lab‐made HCS‐CB carbon counter‐electrode can present up to 3.1% power conversion efficiency under AM 1.5 illumination of 100 mW·cm?2 and 4.5% under weaker light intensities. This result distinctly outperforms the identical DSCs with a Pt electrode. Corrosive experiments reveal that Al and stainless steel (SS) sheets are stable in the [TMFDS]2+/TMTU‐based electrolyte. Its electrochemical impedance spectrum (EIS) is used to evaluate the influence of different counter‐electrodes on the cell performance, and preliminary investigations reveal that carbon electrodes with large surface areas and ideal corrosion‐inertness toward the sulfur‐containing [TMFDS]2+/TMTU redox couple exhibit promise for application in iodine‐free DSCs.  相似文献   

3.
Ionic liquids have been identified as a new class of solvent that offers opportunities to move away from the traditional solvents. The physical‐chemical properties of ionic liquids can be tuned and controlled by tailoring their structures. The typical properties of ionic liquids, such as non‐volatility, electrochemical stability and high conductivity, render them attractive as electrolytes for dye‐sensitized solar cells. However, the high viscosity of ionic liquids leads to mass transport limitations on the photocurrents in the solar cells at full sunlight intensity, but the contribution of a Grotthous‐type exchange mechanism in these viscous electrolytes helps to alleviate these diffusion problems. This article discusses recent developments in the field of high‐performance dye‐sensitized solar cells with ionic liquid‐based electrolytes and their characterization by electrochemical impedance analysis.  相似文献   

4.
A critical component in the development of highly efficient dye‐sensitized solar cells is the interface between the ruthenium bipyridyl complex dye and the surface of the mesoporous titanium dioxide film. In spite of many studies aimed at examining the detailed anchoring mechanism of the dye on the titania surface, there is as yet no commonly accepted understanding. Furthermore, it is generally believed that a single monolayer of strongly attached molecules is required in order to maximize the efficiency of electron injection into the semiconductor. In this study, the amount of adsorbed dye on the mesoporous film is maximised, which in turn increases the light absorption and decreases carrier recombination, resulting in improved device performance. A process that increases the surface concentration of the dye molecules adsorbed on the TiO2 surface by up to 20% is developed. This process is based on partial desorption of the dye after the initial adsorption, followed by readsorption. This desorption/adsorption cycling process can be repeated multiple times and yields a continual increase in dye uptake, up to a saturation limit. The effect on device performance is directly related and a 23% increase in power conversion efficiency is observed. Surface enhanced Raman spectroscopy, infrared spectroscopy, and electrochemical impedance analysis were used to elucidate the fundamental mechanisms behind this observation.  相似文献   

5.
Molecularly engineered weakly conjugated hybrid porphyrin systems are presented as efficient sensitizers for solid‐state dye‐sensitized solar cells. By incorporating the quinolizino acridine and triazatruxene based unit as the secondary light‐harvester as well as electron‐donating group at the meso‐position of the porphyrin core, the power conversion efficiencies of 4.5% and 5.1% are demonstrated in the solid‐state devices containing 2,2′,7,7′‐tetrakis (N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spiro bifluorene as hole transporting material. The photovoltaic performance of the triazatruxene donor based porphyrin sensitizer is better than that of the previously published porphyrin molecules exhibiting strongly conjugated push–pull structure. The effect of molecular structure on the optical and electrochemical properties, the dynamics of charge extraction, as well as the photovoltaic performance are systematically investigated, which offers a new design strategy for further refinement of porphyrin molecules.  相似文献   

6.
Developing highly effective and stable counter electrode (CE) materials to replace rare and expensive noble metals for dye‐sensitized and perovskite solar cells (DSC and PSC) is a research hotspot. Carbon materials are identified as the most qualified noble metal‐free CEs for the commercialization of the two photovoltaic devices due to their merits of low cost, excellent activity, and superior stability. Herein, carbonaceous CE materials are reviewed extensively with respect to the two devices. For DSC, a classified discussion according to the morphology is presented because electrode properties are closely related to the specific porosity or nanostructure of carbon materials. The pivotal factors influencing the catalytic behavior of carbon CEs are also discussed. For PSC, an overview of the new carbon CE materials is addressed comprehensively. Moreover, the modification techniques to improve the interfacial contact between the perovskite and carbon layers, aiming to enhance the photovoltaic performance, are also demonstrated. Finally, the development directions, main challenges, and coping approaches with respect to the carbon CE in DSC and PSC are stated.  相似文献   

7.
In this report, we show for the first time that SnO2 nanowire based dye sensitized solar cells exhibit an open circuit voltage of 560 mV, which is 200 mV higher than that using SnO2 nanoparticle based cells. This is attributed to the more negative flat band potential of nanowires compared to the nanoparticles as determined by open circuit photo voltage measurements made at high light intensities. The nanowires were employed in hybrid structures consisting of highly interconnected SnO2 nanowire matrix coated with TiO2 nanoparticles, which showed an open circuit voltage of 720 mV and an efficiency of 4.1% compared to 2.1% obtained with pure SnO2 nanowire matrix. The electron transport time constants for SnO2 nanowire matrix were an order of magnitude lower and the recombination time constants are about 100 times higher than that of TiO2 nanoparticles. The higher efficiency observed for DSSCs based on hybrid structure is attributed to the band edge positions of SnO2 relative to that of TiO2 and faster electron transport in SnO2 nanowires.  相似文献   

8.
This paper presents a method for determining the optimum active‐area width (OAW) of solar cells in a module architecture. The current density–voltage curve of a reference cell with a narrow active‐area width is used to reproduce the current density profile in the test cell whose active area width is to be optimized. We obtained self‐consistent current density and electric potential profiles from iterative calculations of both properties, considering the distributed resistance of the contact layers. Further, we determined the OAW that yields the maximum efficiency by calculating efficiency as a function of the active‐area width. The proposed method can be applied to the design of the active area of a dye‐sensitized solar cell in Z‐type series connection modules for indoor and building‐integrated photovoltaic systems. Our calculations predicted that OAW increases as the sheet resistances of the contact layers and the intensity of light decrease.  相似文献   

9.
Dye‐sensitized solar cells (DSSCs) are receiving considerable attention as low‐cost alternatives to conventional solar cells. In DSSCs based on liquid electrolytes, a photoelectric efficiency of 11 % has been achieved, but potential problems in sealing the cells and the low long‐term stability of these systems have impeded their practical use. Here, we present a thermoplastic gel electrolyte (TPGE) as an alternative to the liquid electrolytes used in DSSCs. The TPGE exhibits a thermoplastic character, high conductivity, long‐term stability, and can be prepared by a simple and convenient protocol. The viscosity, conductivity, and phase state of the TPGE can be controlled by tuning the composition. Using 40 wt % poly(ethylene glycol) (PEG) as the polymeric host, 60 wt % propylene carbonate (PC) as the solvent, and 0.65 M KI and 0.065 M I2 as the ionic conductors, a TPGE with a conductivity of 2.61 mS cm–2 is prepared. Based on this TPGE, a DSSC is fabricated with an overall light‐to‐electrical‐energy conversion efficiency of 7.22 % under 100 mW cm–2 irradiation. The present findings should accelerate the widespread use of DSSCs.  相似文献   

10.
Initial nanointerfacial electron transfer dynamics are studied in dye‐sensitized solar cells (DSSCs) in which the free energy and kinetics vary over a broad range. Surprisingly, it is found that the decay profiles, reflecting the electron transfer behavior, show a universal shape despite the different kinds of dye and semiconductor nanocrystalline films, even across different device types. This renews intuitive knowledge about the electron injection process in DSSCs. In order to quantitatively comprehend the universal behavior, a static inhomogeneous electronic coupling model with a Gaussian distribution of local injection energetics is proposed in which only the electron injection rate is a variant. It is confirmed that this model can be extended to CdSe quantum dot‐sensitized films. These unambiguous results indicate exactly the same physical distribution in electron injection process of different sensitization films, providing limited simple and important parameters describing the electron injection process including electronic coupling constant and reorganization energy. The results provide insight into photoconversion physics and the design of optimal metal‐free organic dye‐sensitized photovoltaic devices by molecular engineering.  相似文献   

11.
A new class of organic sulfide mediators with programmable redox properties is designed via density functional theory calculations and synthesized for efficient dye‐sensitized solar cells (DSCs). Photophysical and electrochemical properties of these mediators derived from systematical functionalization of the framework with electron donating and withdrawing groups (MeO, Me, H, Cl, CF3, and NO2) are investigated. With this new class of organic mediators, the redox potential can be fine‐tuned over a 170 mV range, overlapping the conventional I?/I3?couple. Due to the suitable interplay of physical properties and electrochemical characteristics of the mediator involving electron‐donating MeO group, the DSCs based on this mediator behave excellently in various kinetic processes such as dye regeneration, electron recombination, and mass transport. Thus, the MeO derivative of the mediator is identified as having the best performance of this series of redox shuttles. As inferred from electrochemical impedance spectroscopy and cyclic voltammetry measurements, the addition of graphene into the normal carbon counter electrode material dramatically improves the apparent catalytic activity of the counter electrode towards the MeO derivative of mediator, resulting in N719 based DSCs showing a promising conversion efficiency of 6.53% under 100 mW·cm?2 simulated sunlight illumination.  相似文献   

12.
A solid‐state dye‐sensitized solar cell (ssDSSC) with 7.4% efficiency at 100 mW/cm2 is reported. This efficiency is one of the highest observed for N719 dye. High performance is achieved via a honeycomb‐like, organized mesoporous TiO2 photoanode with dual pores, high porosity, good interconnectivity, and excellent light scattering properties. The TiO2 photoanodes are prepared without any TiCl4 treatment via a one‐step, direct self‐assembly of hydrophilically preformed TiO2 nanocrystals and poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer as a titania source and a structure‐directing agent, respectively. Upon controlling the secondary forces between the polymer/TiO2 hybrid and the solvent by varying the amounts of HCl/H2O mixture or toluene, honeycomb‐like structures are generated to improve light scattering properties. Such multifunctional nanostructures with dual pores provide good pore‐filling of solid polymer electrolyte with large volume, enhanced light harvesting and reduced charge recombination, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS) analysis.  相似文献   

13.
Compact inverse‐opal structures are constructed using non‐aggregated TiO2 nanoparticles in a three‐dimensional colloidal array template as the photoelectrode of a dye‐sensitized solar cell. Organic‐layer‐coated titania nanoparticles show an enhanced infiltration and a compact packing within the 3D array. Subsequent thermal decomposition to remove the organic template followed by impregnation with N‐719 dye results in excellent inverse‐opal photoelectrodes with a photo‐conversion efficiency as high as 3.47% under air mass 1.5 illumination. This colloidal‐template approach using non‐aggregated nanoparticles provides a simple and versatile way to produce efficient inverse‐opal structures with the ability to control parameters such as cavity diameter and film thickness.  相似文献   

14.
The fabrication and functionalization of large‐area graphene and its electrocatalytic properties for iodine reduction in a dye‐sensitized solar cell are reported. The graphene film, grown by thermal chemical vapor deposition, contains three to five layers of monolayer graphene, as confirmed by Raman spectroscopy and high‐resolution transmission electron microscopy. Further, the graphene film is treated with CF4 reactive‐ion plasma and fluorine ions are successfully doped into graphene as confirmed by X‐ray photoelectron spectroscopy and UV‐photoemission spectroscopy. The fluorinated graphene shows no structural deformations compared to the pristine graphene except an increase in surface roughness. Electrochemical characterization reveals that the catalytic activity of graphene for iodine reduction increases with increasing plasma treatment time, which is attributed to an increase in catalytic sites. Further, the fluorinated graphene is characterized in use as a counter‐electrode in a full dye‐sensitized solar cell and shows ca. 2.56% photon to electron conversion efficiency with ca. 11 mA cm?2 current density. The shift in work function in F? doped graphene is attributed to the shift in graphene redox potential which results in graphene's electrocatalytic‐activity enhancement.  相似文献   

15.
A novel means of generating highly interconnected and nano‐channeled photoelectrodes by employing one‐dimensionally shaped M13 viruses as a sacrificial template is proposed for highly efficient dye‐sensitized solar cells (DSSCs). The electrostatic binding between oppositely charged TiO2 nanoparticles and M13 viruses provides a uniform complexation and suppresses random aggregation of TiO2 nanoparticles. After the calcination process, the traces of viruses leave porously interconnected channel structures inside TiO2 nanoparticles, providing efficient paths for electrolyte contact as well as increased surface sites for dye adsorption. As a result, DSSCs generated using a sacrificial virus template exhibit an enhanced current density (JSC) of 12.35 mA cm‐2 and a high photoconversion efficiency (η) of 6.32%, greater than those of conventional photoelectrodes made of TiO2 nanoparticles (JSC of 8.91 mA cm‐2 and η of 4.67%). In addition, the stiffness and shape of the M13 virus can be varied, emphasizing the usefulness of the one‐dimensional structural characteristics of M13 viruses for the highly interconnected porous structure of DSSC photoelectrodes.  相似文献   

16.
High efficiency dye‐sensitized solar cells (DSSCs) are fabricated with a heterostructured photoanode that consists of a 500‐nm‐thick organized mesoporous TiO2 (om‐TiO2) interfacial layer (IF layer), a 7 or 10‐μm thick nanocrystalline TiO2 layer (NC layer), and a 2‐μm‐thick mesoporous Bragg stack (meso‐BS layer) as the bottom, middle and top layers, respectively. An om‐TiO2 layer with a high porosity, transmittance, and interconnectivity is prepared via a sol‐gel process, in which a poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer is used as a structure‐directing agent. The meso‐BS layer with large pores is prepared via alternating deposition of om‐TiO2 and colloidal SiO2 (col‐SiO2) layers. Structure and optical properties (refractive index) of the om‐TiO2 and meso‐BS layers are studied and the morphology of the heterostructured photoanode is characterized. DSSCs fabricated with the heterostructured IF/NC/BS photoanode and combined with a polymerized ionic liquid (PIL) exhibit an energy conversion efficiencies of 6.6% at 100 mW/cm2, one of the highest reported for solid‐state DSSCs and much larger than cells prepared with only a IF/NC layer (6.0%) or a NC layer (4.5%). Improvements in energy conversion efficiency are attributed to the combination of improved light harvesting, decreased resistance at the electrode/electrolyte interface, and excellent electrolyte infiltration.  相似文献   

17.
Thin film solar cells that are low in cost but still reasonably efficient comprise an important strategy for reaching price‐performance ratios competitive with fossil fuel electrical generation. Sensitized solar cells – most commonly dye but also semiconductor nanocrystal sensitized – are a thin film device option benefitting from lost cost material components and processing. Nanocrystal sensitized solar cells are predicted to outpace their dye‐based counterparts, but suffer from limited availability of approaches for integrating the nano‐sensitizers within a mesoporous oxide anode, which effectively limits the choice of sensitizer to those that are synthesized in situ or those that are easily incorporated into the oxide framework. The latter methods favor small, symmetric nanocrystals, while highly asymmetric semiconductors (e.g., nanowires, tetrapods, carbon nanotubes) have to date found limited utility in sensitized solar‐cell devices, despite their promise as efficient solar energy converters. Here, a new strategy for solar cell fabrication is demonstrated that is independent of sensitizer geometry. Nanocrystal‐sensitized solar cells are fabricated from either CdSe semiconductor quantum dots or nanowires with facile control over nanocrystal loading. Without substantial optimization and using low processing temperatures, efficiencies approaching 2% are demonstrated. Furthermore, the significance of a ‘geometry‐independent’ fabrication strategy is shown by revealing that nanowires afford important advantages compared to quantum dots as sensitizers. For equivalent nanocrystal masses and otherwise identical devices, nanowire devices yield higher power conversion efficiencies, resulting from both enhanced light harvesting efficiencies for all overlapping wavelengths and internal quantum efficiencies that are more than double those obtained for quantum dot devices.  相似文献   

18.
ZnO films consisting of either polydisperse or monodisperse aggregates of nanocrystallites were fabricated and studied as dye‐sensitized solar‐cell electrodes. The results revealed that the overall energy‐conversion efficiency of the cells could be significantly affected by either the average size or the size distribution of the ZnO aggregates. The highest overall energy‐conversion efficiency of ~4.4% was achieved with the film formed by polydisperse ZnO aggregates with a broad size distribution from 120 to 360 nm in diameter. Light scattering by the submicrometer‐sized ZnO aggregates was employed to explain the improved solar‐cell performance through extending the distance travelled by light so as to increase the light‐harvesting efficiency of photoelectrode film. The broad distribution of aggregate size provides the ZnO films with both better packing and an enhanced ability to scatter the incident light, and thus promotes the solar‐cell performance.  相似文献   

19.
An optimized configuration of TiO2 microspheres in photoanodes is of great importance to prepare highly efficient dye‐sensitized solar cells (DSSCs). In this work, TiO2 microspheres with tunable diameter, pore size, and porosity are synthesized by subtly adjusting the synthesizing conditions, including ratios of deionized water, ammonia, and ethanol, respectively. TiO2 microspheres are obtained with large pore sizes and a high porosity without sacrificing specific surface areas. In addition, the effect of their porosity and pore size on the performance of DSSCs is investigated. As confirmed by the dye‐loading ability and electrolyte diffusion resistance, the large mesopores and the high porosity of the TiO2 microspheres can improve dye adsorption and facilitate electrolyte diffusion, giving rise to a high light‐harvesting and electron collection efficiency. Consequently, the highest photocurrent of 19.21 mA cm?2 and a power conversion efficiency of 9.98% are obtained by using the TiO2 microspheres with the highest porosity, compared with a 9.29% efficiency demonstrated by the lowest porosity (an improvement of 7.4%). By modifying the interconnection and the external pores of the microspheres photoanode, a high efficiency of 11.67% is achieved for a DSSC based on the most potent TiO2 microspheres.  相似文献   

20.
The anchoring group in dye‐sensitized solar cells (DSSCs) profoundly affects the electron injection and durability on TiO2 films interface. Here, the hydantoin acceptor is introduced as anchoring group for DSSCs. The hydantoin based sensitizer achieves a photovoltaic efficiency of 7.66%, compared to 4.90% for sensitizer containing the conventional cyanoacrylic acid as anchoring group. Remarkably, the hydantoin anchoring group significantly enhances the electron‐injection efficiency (Φinj) and photocurrent (Jsc). The time dependent adsorption and desorption data indicate the strong binding strength and the superiority of stability for hydantoin based sensitizers. The Fourier transform infrared measurements investigate the adsorption mechanism of hydantoin on TiO2 interface. These results strongly corroborate the advantages of incorporating hydantoin as acceptor and anchoring group. As a consequence, the sensitizer HY‐4 with hydantoin approaches the photovoltaic efficiency of 8.32% under 0.1 sunlight illumination. These observations offer a new route to design and develop efficient sensitizers for DSSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号