首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The band‐gap engineering of doped ZnO nanowires is of the utmost importance for tunable light‐emitting‐diode (LED) applications. A combined experimental and density‐functional theory (DFT) study of ZnO doping by copper (Zn2+ substitution by Cu2+) is presented. ZnO:Cu nanowires are epitaxially grown on magnesium‐doped p‐GaN by electrochemical deposition. The heterojunction is integrated into a LED structure. Efficient charge injection and radiative recombination in the Cu‐doped ZnO nanowires are demonstrated. In the devices, the nanowires act as the light emitters. At room temperature, Cu‐doped ZnO LEDs exhibit low‐threshold emission voltage and electroluminescence emission shifted from the ultraviolet to violet–blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the copper content in the ZnO nanoemitters. The shift is explained by DFT calculations with the appearance of copper d states in the ZnO band‐gap and subsequent gap reduction upon doping. The presented data demonstrate the possibility to tune the band‐gap of ZnO nanowire emitters by copper doping for nano‐LEDs.  相似文献   

2.
A simple catalysis‐free approach that utilises a gas–solid reaction for the synthesis of large‐scale single‐crystalline PrB6 nanorods using Pr and BCl3 as starting materials is demonstrated. The nanorods exhibit a low turn‐on electric field (2.80 V µ‐b;m?1 at 10 µ‐b;A cm?2), a low threshold electric field (6.99 V µ‐b;m?1 at 1 mA cm?2), and a high current density (1.2 mA cm?2 at 7.35 V µ‐b;m?1) at room temperature (RT). The turn‐on and threshold electric field are found to decrease clearly from 2.80 to 0.95 and 6.99 to 3.55 V µ‐b;m?1, respectively, while the emission current density increases significantly from 1.2 to 13.8 mA cm?2 (at 7.35 V µ‐b;m?1) with an increase in the ambient temperature from RT to 623 K. The field enhancement factor, emission current density, and the dependence of the effective work function with temperature are investigated. The possible mechanism of the temperature‐dependent emission from PrB6 nanorods is discussed.  相似文献   

3.
Here, direct correlation between the microstructure of InAs nanowires (NWs) and their electronic transport behavior at room temperature is reported. Pure zinc blende (ZB) InAs NWs grown on SiO2/Si substrates are characterized by a rotational twin along their growth‐direction axis while wurtzite (WZ) InAs NWs grown on InAs (111)B substrates have numerous stacking faults perpendicular to their growth‐direction axis with small ZB segments. In transport measurements on back‐gate field‐effect transistors (FETs) fabricated from both types of NWs, significantly distinct subthreshold characteristics are observed (Ion/Ioff ~ 2 for ZB NWs and ~104 for WZ NWs) despite only a slight difference in their transport coefficients. This difference is attributed to spontaneous polarization charges at the WZ/ZB interfaces, which suppress carrier accumulation at the NW surface, thus enabling full depletion of the WZ NW FET channel. 2D Silvaco‐Atlas simulations are used for ZB and WZ channels to analyze subthreshold current flow, and it is found that a polarization charge density of ≥1013 cm?2 leads to good agreement with experimentally observed subthreshold characteristics for a WZ InAs NW given surface‐state densities in the 5 × 1011–5 × 1012 cm?2 range.  相似文献   

4.
A whole interfacial transition of electrons from conduction bands of n‐type material to the acceptor levels of p‐type material makes the energy band engineering successful. It tunes intrinsic ZnO UV emission to UV‐free and warm white light‐emitting diode (W‐LED) emission with color coordinates around (0.418, 0.429) at the bias of 8–15.5 V. The W‐LED is fabricated based on antimony (Sb) doped p‐ZnO nanowire arrays/Si doped n‐GaN film heterojunction structure through one‐step chemical vapor deposition with quenching process. Element analysis shows that the doping concentration of Sb is ≈1.0%. The IV test exhibits the formation of p‐type ZnO nanowires, and the temperature‐dependent photoluminescence measurement down to 4.65 K confirms the formation of deep levels and shallow acceptor levels after Sb‐doping. The intrinsic UV emission of ZnO at room temperature is cut off in electroluminescence emission at a bias of 4–15.5 V. The UV‐free and warm W‐LED have great potential application in green lights program, especially in eye‐protected lamp and display since television, computer, smart phone, and mobile digital equipment are widely and heavily used in modern human life, as more than 3000 h per year.  相似文献   

5.
Wide-bandgap zinc oxide (ZnO) semiconductors and nanowires have become important materials for electronic and photonic device applications. In this work, we report the growth of well-aligned single-crystal ZnO nanowire arrays on sapphire substrates by chemical vapor deposition and the development of atom probe tomography, an emerging nanoscale characterization method capable of providing deeper insight into the three-dimensional distribution of atoms and impurities within its structure. Using a metal-catalyst-free approach, the influence of the growth parameters on the orientation and density of the nanowires were studied. The resulting ZnO nanowires were determined to be single crystalline, with diameter on the order of 50 nm to 150 nm and length that could be controlled between 0.5 μm to 20 μm. Their density was on the order of high 108 cm−2 to low 109 cm−2. In addition to routine characterizations using scanning and transmission electron microscopy, x-ray diffraction, photoluminescence, and Raman spectroscopy, we developed the atom probe tomography technique for ZnO nanowires, comparing the voltage pulse and laser pulse modes. In-depth analysis of the data was carried out to determine the accurate chemical composition of the nanowires and reveal the incorporation of nitrogen impurities. The current–voltage characteristics of individual nanowires were measured to determine their electrical properties.  相似文献   

6.
Despite multiple research approaches to prevent bacterial colonization on surfaces, device‐associated infections are currently responsible for about 50% of nosocomial infections in Europe and significantly increase health care costs, which demands development of advanced antibacterial surface coatings. Here, novel antimicrobial composite materials incorporating zinc oxide nanoparticles (ZnO NP) into biocompatible poly(N‐isopropylacrylamide) (PNIPAAm) hydrogel layers are prepared by mixing the PNIPAAm prepolymer with ZnO NP, followed by spin‐coating and photocrosslinking. Scanning electron microscopy (SEM) characterization of the composite film morphology reveals a homogeneous distribution of the ZnO NP throughout the film for every applied NP/polymer ratio. The optical properties of the embedded NP are not affected by the matrix as confirmed by UV‐vis spectroscopy. The nanocomposite films exhibit bactericidal behavior towards Escherichia coli (E. coli) for a ZnO concentration as low as ≈0.74 μg cm?2 (1.33 mmol cm?3), which is determined by inductively coupled plasma optical emission spectrometry. In contrast, the coatings are found to be non‐cytotoxic towards a mammalian cell line (NIH/3T3) at bactericidal loadings of ZnO over an extended period of seven days. The differential toxicity of the ZnO/hydrogel nanocomposite thin films between bacterial and cellular species qualifies them as promising candidates for novel biomedical device coatings.  相似文献   

7.
This article surveys recent developments in the rational synthesis of single‐crystalline zinc oxide nanowires and their unique optical properties. The growth of ZnO nanowires was carried out in a simple chemical vapor transport and condensation (CVTC) system. Based on our fundamental understanding of the vapor–liquid–solid (VLS) nanowire growth mechanism, different levels of growth controls (including positional, orientational, diameter, and density control) have been achieved. Power‐dependent emission has been examined and lasing action was observed in these ZnO nanowires when the excitation intensity exceeds a threshold (∼40 kW cm–2). These short‐wavelength nanolasers operate at room temperature and the areal density of these nanolasers on substrate readily reaches 1 × 1010 cm–2. The observation of lasing action in these nanowire arrays without any fabricated mirrors indicates these single‐crystalline, well‐facetted nanowires can function as self‐contained optical resonance cavities. This argument is further supported by our recent near‐field scanning optical microscopy (NSOM) studies on single nanowires.  相似文献   

8.
We report the synthesis and organic light‐emitting devices (OLEDs) made from a series of 1‐phenyl‐ and 3‐phenylisoquinolinyliridium complexes in which the phenyl group is linked to the C1 and C3 carbons of isoquinoline, respectively. These linkage isomers show distinct differences in their photophysical and electroluminescence (EL) properties, including the magnitude of phosphorescent lifetimes and photoluminescence (PL) and EL emission wavelengths, as well as the phenomenon of triplet–triplet (T–T) annihilation. Complexes of these two families show a strong absorption band in the region 440–490 nm assignable to spin‐forbidden 3MLCT (metal–ligand charge‐transfer) bands. The extinction coefficients of these bands are similar to those of spin‐allowed 1MLCT bands, indicative of an anomalously strong spin–orbital coupling. Upon excitation, 1‐phenylisoquinolinyliridium complexes exhibit a single phosphorescent emission band in the red region (595–631 nm). All of these red phosphors show outstanding EL performance with negligible T–T annihilation because of short phosphorescent lifetimes (1.04–2.46 μs in CH2Cl2) and good emission quantum yields. One representative, [Ir(5‐f‐1piq)2(acac)] (acac = acetylacetonate) ( 3 ) (5‐f‐1piqH = 5‐fluoro‐1‐phenylisoquinoline), is not only the brightest at low voltages (1883 cd m–2 at 7.1 V; 8320 cd m–2 at 9.0 V) but also shows a ηext value of. 6.50 % at high current (J = 400 mA cm–2). The maximum brightness is 38 218 cd m–2 (x = 0.68, y = 0.31) with the full width at half maximum (FWHM) only 50 nm at 8 V. In contrast, 3‐phenylisoquinolinyliridium complexes show phosphorescent emissions in the yellow region (534–562 nm) but with a long phosphorescent lifetime (3.90–15.6 μs in CH2Cl2). Most of these yellow phosphors suffer T–T annihilation in the EL performance. The exception is [Ir(3‐piq)2(acac)] ( 5 ) (3‐piqH = 3‐phenylisoquinoline), which has a relatively short lifetime 3.90 μs in CH2Cl2. Complex 5 achieves an external efficiency (ηext) value of 5.27 % at J = 20 mA cm–2 and maintains a ηext value of 3.58 at J = 400 mA cm–2 with a maximum brightness of 65 448 cd m–2 (x = 0.49, y = 0.51).  相似文献   

9.
Flexible large‐area organic light‐emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin‐doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are highly desired. Here an indium‐free anode is developed by a combinatorial study of zinc oxide (ZnO) and tin oxide (SnO2), both composed of earth‐abundant elements. The optimized Zn–Sn–O (ZTO) films have electron mobilities of up to 21 cm2 V?1 s?1, a conductivity of 245 S cm?1, and <5% absorptance in the visible range of the spectrum. The high electron mobilities and low surface roughness (<0.2 nm) are achieved by producing dense and void‐free amorphous layers as confirmed by transmission electron microscopy. These ZTO layers are evaluated for OLEDs in two anode configurations: i) 10 cm2 devices with ZTO/Ag/ZTO and ii) 41 cm2 devices with ZTO plus a metal grid. The ZTO layers are compatible with OLED processing steps and large‐area white OLEDs fabricated with the ZTO/grid anode show better performance than those with ITO/grid anodes. These results confirm that ZTO has the potential as an In‐free and Earth‐abundant alternative to ITO for large‐area flexible OLEDs.  相似文献   

10.
Novel blue‐light‐emitting materials, 9,10‐bis(1,2‐diphenyl styryl)anthracene (BDSA) and 9,10‐bis(4′‐triphenylsilylphenyl)anthracene (BTSA), which are composed of an anthracene molecule as the main unit and a rigid and bulky 1,2‐diphenylstyryl or triphenylsilylphenyl side unit, have been designed and synthesized. Theoretical calculations on the three‐dimensional structures of BDSA and BTSA show that they have a non‐coplanar structure and inhibited intermolecular interactions, resulting in a high luminescence efficiency and good color purity. By incorporating these new, non‐doped, blue‐light‐emitting materials into a multilayer device structure, it is possible to achieve luminance efficiencies of 1.43 lm W–1 (3.0 cd A–1 at 6.6 V) for BDSA and 0.61 lm W–1 (1.3 cd A–1 at 6.7 V) for BTSA at 10 mA cm–2. The electroluminescence spectrum of the indium tin oxide (ITO)/copper phthalocyanine (CuPc)/1,4‐bis[(1‐naphthylphenyl)‐amino]biphenyl (α‐NPD)/BDSA/tris(9‐hydroxyquinolinato)aluminum (Alq3)/LiF/Al device shows a narrow emission band with a full width at half maximum (FWHM) of 55 nm and a λmax = 453 nm. The FWHM of the ITO/CuPc/α‐NPD/BTSA/Alq3/LiF/Al device is 53 nm, with a λmax = 436 nm. Regarding color, the devices showed highly pure blue emission ((x,y) = (0.15,0.09) for BTSA, (x,y) = (0.14,0.10) for BDSA) at 10 mA cm–2 in Commission Internationale de l'Eclairage (CIE) chromaticity coordinates.  相似文献   

11.
A solution processed n‐channel zinc oxide (ZnO) field effect transistor (FET) was fabricated by simple dip coating and subsequent heat treatment of a zinc acetate film. The field effect mobility of electrons depends on ZnO grain size, controlled by changing the number of coatings and zinc acetate solution concentration. The highest electron mobility achieved by this method is 7.2 cm2 V?1 s?1 with On/Off ratio of 70. This electron mobility is higher than for the most recently reported solution processed ZnO transistor. We also fabricated bilayer transistors where the first layer is ZnO, and the second layer is pentacene, a p‐channel organic which is deposited by thermal evaporation. By changing the ZnO grain size (or thickness) this type of bilayer transistor shows p‐channel, ambipolar and n‐channel behavior. For the ambipolar transistor, well balanced electron and hole mobilities are 7.6 × 10?3 and 6.3 × 10?3 cm2 V?1 s?1 respectively. When the ZnO layer is very thin, the transistor shows p‐channel behavior with very high reversible hysteresis. The nonvolatile tuning function of this transistor was investigated.  相似文献   

12.
Organic crystals that combine high charge‐carrier mobility and excellent light‐emission characteristics are expected to be of interest for light‐emitting transistors and diodes, and may offer renewed hope for electrically pumped laser action. High‐luminescence‐efficiency cyano‐substituted oligo(p‐ phenylene vinylene) (CN‐DPDSB) crystals (η ≈ 95%) grown by the physical vapor transport method is reported here, with high mobilities (at ≈10?2 cm2 V?1 s?1 order of magnitude) as measured by time‐of‐flight. The CN‐DPDSB crystals have well‐balanced bipolar carrier‐transport characteristics (μhole≈ 2.5–5.5 × 10?2 cm2 V?1 s?1; μelectron ≈ 0.9–1.3 × 10?2 cm2 V?1 s?1) and excellent optically pumped laser properties. The threshold for amplified spontaneous emission (ASE) is about 4.6 μJ per pulse (23 KW cm?2), while the gain coefficient at the peak wavelength of ASE and the loss coefficient caused by scattering are ≈35 and ≈1.7 cm?1, respectively. This indicates that CN‐DPDSB crystals are promising candidates for organic laser diodes.  相似文献   

13.
Heteroepitaxial ZnO films are successfully grown on nondoped GaN‐buffered Al2O3 (0001) substrates in water at 90 °C using a two‐step process. In the first step, a discontinuous ZnO thin film (ca. 200 nm in thickness) consisting of hexagonal ZnO crystallites is grown in a solution containing Zn(NO3)·6 H2O and NH4NO3 at ca. pH 7.5 for 24 h. In the second step, a dense and continuous ZnO film (ca. 2.5 μm) is grown on the first ZnO thin film in a solution containing Zn(NO3)·6 H2O and sodium citrate at ca. pH 10.9 for 8 h. Scanning electron microscopy, X‐ray diffraction, UV‐vis absorption spectroscopy, photoluminescence spectroscopy, and Hall‐effect measurement are used to investigate the structural, optical, and electrical properties of the ZnO films. X‐ray diffraction analysis shows that ZnO is a monocrystalline wurtzite structure with an epitaxial orientation relationship of (0001)[11 0]ZnO∥(0001)[11 0]GaN. Optical transmission spectroscopy of the two‐step grown ZnO film shows a bandgap energy of 3.26 eV at room temperature. A room‐temperature photoluminescence spectrum of the ZnO film reveals only a main peak at ca. 380 nm without any significant defect‐related deep‐level emissions. The electrical property of ZnO film showed n‐type behavior with a carrier concentration of 3.5 × 1018 cm–3 and a mobility of 10.3 cm2 V–1 s–1.  相似文献   

14.
Semiconductor micro/nano‐cavities with high quality factor (Q) and small modal volume provide critical platforms for exploring strong light‐matter interactions and quantum optics, enabling further development of coherent and quantum photonic devices. Constrained by exciton binding energy and thermal fluctuation, only a handful of wide‐band semiconductors such as ZnO and GaN have stable excitons at room temperature. Metal halide perovskite with cubic lattice and well‐controlled exciton may provide solutions. In this work, high‐quality single‐crystalline cesium lead halide CsPbX3 (X = Cl, Br, I) whispering‐gallery‐mode (WGM) microcavities are synthesized by vapor‐phase van der Waals epitaxy method. The as‐grown perovskites show strong emission and stable exciton at room temperature over the whole visible spectra range. By varying the halide composition, multi‐color (400–700 nm).WGM excitonic lasing is achieved at room temperature with low threshold (~ 2.0 μJ cm?2) and high spectra coherence (~0.14–0.15 nm). The results advocate the promise of inorganic perovskites towards development of optoelectronic devices and strong light‐matter coupling in quantum optics.  相似文献   

15.
Potassium‐doped titania and titanate nanowires are fabricated by moisture‐assisted direct oxidation of titanium. The influence of the fabrication conditions on nanowire structure and morphology is investigated. It is shown that the presence of potassium is essential for nanowire formation, while the nanowire structure and morphology are strongly dependent on the fabrication temperature. The longest nanowires (ca. 10 μm) are obtained at 650 °C. At this substrate temperature, nanowires could be produced over a large substrate area both by oxidation of the Ti foil as well as by depositing a Ti film on the substrate (quartz or fluorine‐doped tin oxide (FTO)/quartz). Photovoltaic cells based on these nanowires are fabricated. The cell performance is dependent on the nanowire fabrication temperature and the substrate used, as well as on the annealing environment. Short‐circuit current densities of Isc = 3.05 mA cm–2 and Isc = 4.97 mA cm–2 could be obtained for Ti foil and FTO/quartz substrates, respectively, while the corresponding power‐conversion efficiencies are η = 0.93 % and η = 1.88 % (under AM 1.5 illumination, 100 mW cm–2; AM: air mass).  相似文献   

16.
An effective stacked memory concept utilizing all‐oxide‐based device components for future high‐density nonvolatile stacked structure data storage is developed. GaInZnO (GIZO) thin‐film transistors, grown at room temperature, are integrated with one‐diode (CuO/InZnO)–one‐resistor (NiO) (1D–1R) structure oxide storage node elements, fabricated at room temperature. The low growth temperatures and fabrication methods introduced in this paper allow the demonstration of a stackable memory array as well as integrated device characteristics. Benefits provided by low‐temperature processes are demonstrated by fabrication of working devices over glass substrates. Here, the device characteristics of each individual component as well as the characteristics of a combined select transistor with a 1D–1R cell are reported. X‐ray photoelectron spectroscopy analysis of a NiO resistance layer deposited by sputter and atomic layer deposition confirms the importance of metallic Ni content in NiO for bi‐stable resistance switching. The GIZO transistor shows a field‐effect mobility of 30 cm2 V−1 s−1, a Vth of +1.2 V, and a drain current on/off ratio of up to 108, while the CuO/InZnO heterojunction oxide diode has forward current densities of 2 × 104 A cm−2. Both of these materials show the performance of state‐of‐the‐art oxide devices.  相似文献   

17.
The properties of metal oxides with high dielectric constant (k) are being extensively studied for use as gate dielectric alternatives to silicon dioxide (SiO2). Despite their attractive properties, these high‐k dielectrics are usually manufactured using costly vacuum‐based techniques. In that respect, recent research has been focused on the development of alternative deposition methods based on solution‐processable metal oxides. Here, the application of the spray pyrolysis (SP) technique for processing high‐quality hafnium oxide (HfO2) gate dielectrics and their implementation in thin film transistors employing spray‐coated zinc oxide (ZnO) semiconducting channels are reported. The films are studied by means of admittance spectroscopy, atomic force microscopy, X‐ray diffraction, UV–Visible absorption spectroscopy, FTIR, spectroscopic ellipsometry, and field‐effect measurements. Analyses reveal polycrystalline HfO2 layers of monoclinic structure that exhibit wide band gap (≈5.7 eV), low roughness (≈0.8 nm), high dielectric constant (k ≈ 18.8), and high breakdown voltage (≈2.7 MV/cm). Thin film transistors based on HfO2/ZnO stacks exhibit excellent electron transport characteristics with low operating voltages (≈6 V), high on/off current modulation ratio (~107) and electron mobility in excess of 40 cm2 V?1 s?1.  相似文献   

18.
We report an efficient method to synthesize vertically aligned Co3O4 nanostructures on the surface of cobalt foils. This synthesis is accomplished by simply heating the cobalt foils in the presence of oxygen gas. The resultant morphologies of the nanostructures can be tailored to be either one‐dimensional nanowires or two‐dimensional nanowalls by controlling the reactivity and the diffusion rate of the oxygen species during the growth process. A possible growth mechanism governing the formation of such nanostructures is discussed. The field‐emission properties of the as‐synthesized nanostructures are investigated in detail. The turn‐on field was determined to be 6.4 and 7.7 V μm–1 for nanowires and nanowalls, respectively. The nanowire samples show superior field‐emission characteristics with a lower turn‐on field and higher current density because of their sharp tip geometry and high aspect ratio.  相似文献   

19.
Aiming for highly efficient blue electroluminescence, we have designed and synthesized a novel class of tetraphenylimidazole‐ based excited‐state intramolecular proton‐transfer (ESIPT) molecules with covalently linked charge‐transporting functional groups (carbazole‐ and oxadiazole‐functionalized hydroxyl‐substituted tetraphenylimidazole (HPI), i.e., HPI‐Cbz and HPI‐Oxd, respectively). High Tg (ca. 130 °C) amorphous films of HPI‐Cbz and HPI‐Oxd showed intense and ideal blue‐light emission (λmax = 462 and 468 nm, ΦPL = 0.44 and 0.38) with a large Stokes shift of over 160 nm and a narrow full width at half‐maximum of less than 65 nm. Organic light‐emitting devices using HPI‐Cbz and HPI‐Oxd as the emitting layer generated an efficient blue electroluminescence (EL) emission peaking at around 460 nm with excellent CIE coordinates of (x, y) = (0.15, 0.11). A maximum external quantum efficiency of 2.94%, and a maximum brightness of 1 229 cd m−2 at 100 mA cm−2, as well as a low turn‐on voltage of 4.8 V were achieved in this work.  相似文献   

20.
Organic light‐emitting diodes (OLEDs) have great potential applications in display and solid‐state lighting. Stability, cost, and blue emission are key issues governing the future of OLEDs. The synthesis and photoelectronics of a series of three kinds of binaphthyl (BN) derivatives are reported. BN1–3 are “melting‐point‐less” and highly stable materials, forming very good, amorphous, glass‐like films. They decompose at temperatures as high as 485–545 °C. At a constant current density of 25 mA cm?2, an ITO/BN3/Al single‐layer device has a much‐longer lifetime (>80 h) than that of an ITO/NPB/Al single‐layer device (8 h). Also, the lifetime of a multilayer device based on BN1 is longer than a similar device based on NPB. BNs are efficient and versatile OLED materials: they can be used as a hole‐transport layer (HTL), a host, and a deep‐blue‐light‐emitting material. This versatility may cut the cost of large‐scale material manufacture. More importantly, the deep‐blue electroluminescence (emission peak at 444 nm with CIE coordinates (0.16, 0.11), 3.23 cd A?1 at 0.21 mA cm?2, and 25200 cd m?2 at 9 V) remains very stable at very high current densities up to 1000 mA cm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号