共查询到20条相似文献,搜索用时 24 毫秒
1.
Vibration control of load for rotary crane system using neural network with GA-based training 总被引:4,自引:0,他引:4
Kunihiko Nakazono Kouhei Ohnishi Hiroshi Kinjo Tetsuhiko Yamamoto 《Artificial Life and Robotics》2008,13(1):98-101
A neuro-controller for vibration control of load in a rotary crane system is proposed involving the rotation about the vertical
axis only. As in a nonholonomic system, the vibration control method using a static continuous state feedback cannot stabilize
the load swing. It is necessary to design a time-varying feedback controller or a discontinuous feedback controller. We propose
a simple three-layered neural network as a controller (NC) with genetic algorithm-based (GA-based) training in order to control
load swing suppression for the rotary crane system. The NC is trained by a real-coded GA, which substantially simplifies the
design of the controller. It appeared that a control scheme with performance comparable to conventional methods can be obtained
by a relatively simple approach.
This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January
31–February 2, 2008 相似文献
2.
In this paper, both off-line architecture optimization and on-line adaptation have been developed for a dynamic neural network (DNN) in nonlinear system identification. In the off-line architecture optimization, a new effective encoding scheme—Direct Matrix Mapping Encoding (DMME) method is proposed to represent the structure of neural network by establishing connection matrices. A series of GA operations are applied to the connection matrices to find the optimal number of neurons on each hidden layer and interconnection between two neighboring layers of DNN. The hybrid training is adopted to evolve the architecture, and to tune the weights and input delays of DNN by combining GA with the modified adaptation laws. The modified adaptation laws are subsequently used to tune the input time delays, weights and linear parameters in the optimized DNN-based model in on-line nonlinear system identification. The effectiveness of the architecture optimization and adaptation is extensively tested by means of two nonlinear system identification examples. 相似文献
3.
BP算法训练神经网络具有训练易陷入局部极小,收敛速度缓慢的缺点.将动态隧道技术运用到训练BP网络上,可以有效的改进BP网络易陷入局部极小的缺陷,但是传统的动态隧道技术训练BP网络算法在隧道方向具有不稳定性.提出一种多轨道动态隧道技术训练BP网络算法,在原基础上,增加了隧道搜索方向,考察搜索方向之间的相互影响,有效的改进了原算法的搜索效率.还对提出的新算法进行了性能分析,通过两种数据集进行了实验验证,证明其性能优于传统的动态隧道技术训练BP网络算法. 相似文献
4.
Employing an effective learning process is a critical topic in designing a fuzzy neural network, especially when expert knowledge is not available. This paper presents a genetic algorithm (GA) based learning approach for a specific type of fuzzy neural network. The proposed learning approach consists of three stages. In the first stage the membership functions of both input and output variables are initialized by determining their centers and widths using a self-organizing algorithm. The second stage employs the proposed GA based learning algorithm to identify the fuzzy rules while the final stage tunes the derived structure and parameters using a back-propagation learning algorithm. The capabilities of the proposed GA-based learning approach are evaluated using a well-examined benchmark example and its effectiveness is analyzed by means of a comparative study with other approaches. The usefulness of the proposed GA-based learning approach is also illustrated in a practical case study where it is used to predict the performance of road traffic control actions. Results from the benchmarking exercise and case study effectively demonstrate the ability of the proposed three stages learning approach to identify relevant fuzzy rules from a training data set with a higher prediction accuracy than alternative approaches. 相似文献
5.
为减小测距技术中的非视距误差并解决定位模型中存在的问题,提出一种实时动态参数定位方法。基于人工神经网络算法,利用多个参考节点获取的测量值的非视距(NLOS)误差,使测量值 RSSI接近视距(LOS)环境下的测量值;通过该区域内选定的参考节点之间的相互通信实时动态地估算出环境参数值。实验结果表明,该算法缩减了在RSSI测距技术中的非视距误差,并能根据实际环境条件实时动态地调整定位模型的参数,有效提高定位精度。 相似文献
6.
非线性动态系统的Wiener神经网络辨识法 总被引:2,自引:0,他引:2
提出了一种新的Wiener神经网络结构并将其应用于非线性动态系统辨识问题.首先,用Wiener模型对非线性动态系统进行描述,将其分解成线性动态子环节串接非线性静态增益的形式.其次,设计一种新型的神经网络结构,使网络权值对应于相应的Wiener模型参数;并推导了基于反向传播的网络权值调整方法.最后,通过网络迭代训练,可同时得到线性动态子环节和非线性静态增益的模型参数.通过一个Wiener模型的数值仿真来验证方法的有效性,仿真结果表明所提辨识方法切实可行. 相似文献
7.
R. A. Aliev B. Fazlollahi R. R. Aliev B. Guirimov 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2008,12(2):183-190
It is known that one of the most spread forecasting methods is the time series analysis. A weakness of traditional crisp time
series forecasting methods is that they process only measurement based numerical information and cannot deal with the perception-based
historical data represented by linguistic values. Application of a new class of time series, a fuzzy time series whose values
are linguistic values, can overcome the mentioned weakness of traditional forecasting methods. In this paper we propose a
fuzzy recurrent neural network (FRNN) based time series forecasting method for solving forecasting problems in which the data
can be presented as perceptions and described by fuzzy numbers. The FRNN allows effectively handle fuzzy time series to apply
human expertise throughout the forecasting procedure and demonstrates more adequate forecasting results. Recurrent links in
FRNN also allow for simplification of the overall network structure (size) and forecasting procedure. Genetic algorithm-based
procedure is used for training the FRNN. The effectiveness of the proposed fuzzy time series forecasting method is tested
on the benchmark examples. 相似文献
8.
针对水轮发电机组的复杂动态特征,提出一种新的动态递归模糊神经网络结构,并将其应用于解决水轮发电机组的建模问题.通过在网络规则层引入乘积运算,使得复杂模糊规则容易提取,模糊推理功能易于实现.在网络隐层中引入局部递归单元,该方法能克服基于反向误差传播的静态网络辨识动态系统的局限性,提高辨识水轮发电机组动态特性的准确性.通过与其他智能方法的仿真比较,验证了所提出方法的有效性. 相似文献
9.
This paper reports a study unifying optimization by genetic algorithm with a generalized regression neural network. Experiments compare hill-climbing optimization with that of a genetic algorithm, both in conjunction with a generalized regression neural network. Controlled data with nine independent variables are used in combination with conjunctive and compensatory decision forms, having zero percent and 10 percent noise levels. Results consistently favor the GRNN unified with the genetic algorithm. 相似文献
10.
Traditional parametric software reliability growth models (SRGMs) are based on some assumptions or distributions and none such single model can produce accurate prediction results in all circumstances. Non-parametric models like the artificial neural network (ANN) based models can predict software reliability based on only fault history data without any assumptions. In this paper, initially we propose a robust feedforward neural network (FFNN) based dynamic weighted combination model (PFFNNDWCM) for software reliability prediction. Four well-known traditional SRGMs are combined based on the dynamically evaluated weights determined by the learning algorithm of the proposed FFNN. Based on this proposed FFNN architecture, we also propose a robust recurrent neural network (RNN) based dynamic weighted combination model (PRNNDWCM) to predict the software reliability more justifiably. A real-coded genetic algorithm (GA) is proposed to train the ANNs. Predictability of the proposed models are compared with the existing ANN based software reliability models through three real software failure data sets. We also compare the performances of the proposed models with the models that can be developed by combining three or two of the four SRGMs. Comparative studies demonstrate that the PFFNNDWCM and PRNNDWCM present fairly accurate fitting and predictive capability than the other existing ANN based models. Numerical and graphical explanations show that PRNNDWCM is promising for software reliability prediction since its fitting and prediction error is much less relative to the PFFNNDWCM. 相似文献
11.
A neural network model and algorithm for the hybrid flow shop scheduling problem
in a dynamic environment 总被引:8,自引:0,他引:8
A hybrid flow shop (HFS) is a generalized flow shop with multiple machines in some stages. HFS is fairly common in flexible manufacturing and in process industry. Because manufacturing systems often operate in a stochastic and dynamic environment, dynamic hybrid flow shop scheduling is frequently encountered in practice. This paper proposes a neural network model and algorithm to solve the dynamic hybrid flow shop scheduling problem. In order to obtain training examples for the neural network, we first study, through simulation, the performance of some dispatching rules that have demonstrated effectiveness in the previous related research. The results are then transformed into training examples. The training process is optimized by the delta-bar-delta (DBD) method that can speed up training convergence. The most commonly used dispatching rules are used as benchmarks. Simulation results show that the performance of the neural network approach is much better than that of the traditional dispatching rules.This revised version was published in June 2005 with corrected page numbers. 相似文献
12.
研究了应用动态递归神经网络实现动态系统辨识的原理和方法,在没有被辨识对象的先验知识情况下,通过改进的Elman网络实现了非线性动态系统的辨识。仿真结果表明,与前馈网络相比,Elman网络具有学习速度快、泛化能力强的特点,可用较小的网络结构实现高阶系统的辨识,适用于具有本质非线性动态系统的辨识。 相似文献
13.
Derivative and GA-based methods in metamodeling of back-propagation neural networks for constrained approximate optimization 总被引:1,自引:0,他引:1
Jongsoo Lee Heeseok Jeong Seongkyu Kang 《Structural and Multidisciplinary Optimization》2008,35(1):29-40
Artificial neural networks (ANN) have been extensively used as global approximation tools in the context of approximate optimization.
ANN traditionally minimizes the absolute difference between target outputs and approximate outputs thereby resulting in approximate
optimal solutions being sometimes actually infeasible when it is used as a metamodel for inequality constraint functions.
The paper explores the development of the efficient back-propagation neural network (BPN)-based metamodel that ensures the
constraint feasibility of approximate optimal solution. The BPN architecture is optimized via two approaches of both derivative-based
method and genetic algorithm (GA) to determine interconnection weights between layers in the network. The verification of
the proposed approach is examined by adopting a standard ten-bar truss problem. Finally, a GA-based approximate optimization
of suspension with an optical flying head is conducted to enhance the shock resistance capability in addition to dynamic characteristics. 相似文献
14.
15.
徐敏 《计算机工程与应用》2008,44(18):41-43
在分析构造性神经网络集成和层状神经网络集成方法的基础上,提出了一种构造性层状神经网络集成方法。该方法自动确定神经网络集成中成员神经网络的数目,以及成员神经网络的结构等。集成在保证成员神经网络精度的同时,又保证了成员网络之间的差异度。用户只需要简单定义一些参数,就可以构造出性能较好的神经网络集成。 相似文献
16.
针对神经网络分类器训练时间长、泛化能力差的问题,提出了一种基于动态数据约简的神经网络分类器训练方法(DDR)。该训练方法在训练过程中赋给每个训练样本一个权重值作为样本的重要性度量,依据每次网络迭代训练样本的分类错误率动态更新每个训练样本的权重值,之后依据样本的权重值来约简训练样本,从而增加易错分类的边界样本比重,减少冗余核样本的作用。数值实验表明,基于权重的动态数据约简神经网络训练方法不仅大幅缩短了网络的训练时间,而且还能够显著提升网络的分类泛化能力。 相似文献
17.
提出了一种新的RBF神经网络的训练方法,采用动态K-均值方法对RBF 神经网络的隐层中心值和宽度进行了优化,用代数算法训练隐层和输出层之间的权值。在对非线性函数进行逼近的仿真中,验证了该算法的有效性。 相似文献
18.
王卫安 《网络安全技术与应用》2014,(8):17-18
本文针对目前基于BP神经网络的入侵检测已陷入局部极值和收敛速度慢等问题,提出一种基于改进的遗传算法和BP神经网络的混合入侵检测方法。仿真实验结果表明,此方法比单独使用BP神经网络的检测方法收敛速度更快,误差更小。 相似文献
19.
为了提高预测粮食产量的准确度,针对BP神经网络进行粮食产量预测时易陷入局部最优的缺陷,主要借鉴免疫系统的浓度调节机制和遗传算法的全局寻优特性,用自适应免疫遗传算法(AIGA)来优化BP神经网络的权值和阈值,并给出了具体的优化过程。用优化的神经网络对粮食产量进行了仿真预测,通过仿真实验表明,与BP神经网络预测法和遗传神经网络预测法对比,优化的网络模型在粮食产量预测中取得了更精确的结果。 相似文献
20.
This paper presents a new neural network training scheme for pattern recognition applications. Our training technique is a hybrid scheme which involves, firstly, the use of the efficient BFGS optimisation method for locating minima of the total error function and, secondly, the use of genetic algorithms for finding a global minimum. This paper also describes experiments that compare the performance of our scheme with three other hybrid schemes of this kind when applied to challenging pattern recognition problems. Experiments have shown that our scheme gives better results than others. 相似文献