首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本工作构建了稀土掺杂的储氢合金体系,通过提高其稀土氢化物的催化能力来改善Mg-RE系储氢合金的性能,并分析了不同稀土掺杂后合金性能的差异,以获得改善其热力学和动力学性能的途径。通过真空感应熔炼制备了Mg90Ce5RE5(RE=La、Nd、Sm、Y)合金,并分析了其相应的物相组成和微观结构。同时,采用等体积方法测试了Mg90Ce5RE5不同温度下的压力-温度-组成(PCT)曲线和等温吸放氢动力学性能。结果表明,氢化后的样品均是由MgH2相和相应的稀土氢化物REH2+x相组成的复合材料,然而在放氢后,仅MgH2相发生分解反应,生成Mg相并放出氢气。原位生成的REH2+x相不发生分解,通过降低Mg-H键的稳定性、合金的表观活化能以及提升H原子的扩散速率,来促进Mg与MgH2的可逆转化。这导致了不同合金的PCT平台压高度的变化,从而影响其热力和动力学性能。...  相似文献   

2.
采用高能振动球磨法,制备了Mg35Ti65合金,并添加(10%La0.4Ce0.1Pr0.3Nd0.2Ni_4Co0.5Mn0.3Al0.2)作为改性剂,制备了储氢合金Mg35Ti65/(10%La0.4Ce0.1Pr0.3Nd0.2Ni_4Co0.5Mn0.3Al0.2),研究了改性剂的添加及球磨时间对合金显微组织、吸放氢性能的影响规律。结果表明:球磨Mg35Ti65时间为20h时,能获得单一的BCC固溶体相,加入质量分数为10%的改性剂球磨0.5h时能明显地改善其储氢性能,8MPa,573K下100s内吸氢质量能达到3%,随着球磨时间的增加,其相结构发生改变,吸氢量及动力学性能逐渐变差。  相似文献   

3.
通过真空感应熔炼技术成功制备了铸态Ti1Fe0.8Mn0.2Smx(x=0.02, 0.04, 0.06, 0.08)储氢合金,通过X射线衍射仪(XRD),描电子显微镜(SEM),透射电子显微镜(TEM)以及Sievert等体积方法系统地研究了掺杂Sm元素对合金的相组成、微观结构及吸放氢动力学性能的影响。结果表明,Sm元素的掺杂不仅能够促进TiFeH2相的形成,同时也能抑制不吸氢相TiFe2相的出现,这有利于提高合金的有效储氢容量。此外,Sm元素的掺杂能有效改善合金的活化性能,大幅度降低活化潜伏期,且可以同时改善了合金的吸放氢动力学性能,并有效降低合金吸放氢活化能。且当x=0.08时,其合金吸氢活化能为-6.8 kJ·mol-1,放氢活化能为48.9 kJ·mol-1。  相似文献   

4.
卢祺  黄锋  郭逊 《材料导报》2021,35(9):9033-9040
Mg基合金具有储氢量大、质量轻、资源丰富、价格低廉等特点,但其较高的放氢温度和较慢的吸放氢速率是限制其应用的关键问题.合金化是改善Mg基储氢合金吸放氢热力学和动力学的有效方法,在纯Mg中添加Ni会形成Mg2 Ni,其吸放氢热力学与动力学均会得到明显改善,但仍不够理想,有待进一步提高.本文就合金化对Mg-Ni系合金储氢性能的影响进行了综述,整理了各合金元素的添加对Mg-Ni系合金吸放氢热力学与动力学的影响,最后对Mg-Ni系合金的发展进行了展望.  相似文献   

5.
AB5型储氢合金在气固储氢、氢压缩、镍氢电池等领域具有广阔的应用前景,其循环稳定性是人们的一个关注点.本实验通过电弧熔炼的冶金方法,结合长时间退火的热处理工艺,制备了以CaCu5相为主相,以富Ni/Sn相为次要相,以及少量C相和Si相弥散分布的LaNi5.5 Sn1.5-C-Si合金,并结合LaNi5基础合金,研究了LaNi5.5 Sn1.5-C-Si合金在1000周吸/放氢循环过程中的储氢性能变化规律.结果表明,随着吸/放氢循环,合金的储氢容量略有降低,吸/放氢平台发生细微的倾斜,但以上变化远远小于LaNi5合金循环1000周的变化.LaNi5.5 Sn1.5-C-Si合金循环1000周的容量保持率高达98%,这可能是由于C和Si相的弥散分布对合金颗粒的粉化起到了缓冲作用.此外,LaNi5.5 Sn1.5-C-Si合金具有良好的吸氢动力学性能,在383~423 K、2 MPa氢压下200 s内即可完全吸氢,合金良好的吸氢动力学性能可能与富Ni/Sn相的催化作用有关.  相似文献   

6.
采用中频感应炉冶炼了添加少量Y和Cu的Mg 2Ni型储氢合金,利用X射线衍射仪、扫描电子显微镜、能谱分析仪、透射电子显微镜对合金不同状态下的物相结构与显微组织进行测试,借助基于Sieverts法的吸放氢设备和差示扫描量热仪测试合金的放氢性能,研究合金在等温与连续加热条件下的放氢过程和放氢活化能,并讨论相应的放氢机制。结果表明:铸态合金呈片层状组织,其主相为Mg 2Ni,YMgNi 4,并含有少量Mg;在前6次放氢中,每次达到90%最大放氢量所用时间分别为446,418,360,354,342 s和336 s;对等温放氢曲线拟合的结果表明:合金脱氢过程是以随机成核和随后生长的机制完成;等温放氢时的活化能E a=67.6 kJ/mol,而连续升温时的放氢活化能E a=69.5 kJ/mol;同时发现,505 K和512 K为Mg 2NiH 4相的晶型转变点,且Mg 2NiH 4比MgH 2先行放氢。  相似文献   

7.
采用等通道转角挤压(ECAP)方式细化ZK60合金晶粒,再利用机械球磨法分别添加Fe、Co及Al制备了3种储氢材料。采用X射线衍射仪、储氢特性测试仪和扫描电镜研究了储氢材料的高周期吸/放氢性能及其显微组织变化。结果表明:ZK60-Fe、ZK60-Co和ZK60-Al的吸氢速率均随着吸/放氢循环次数增加而增大,其中ZK60-Al的吸氢速率增大最快,第200次吸/放氢循环的5min内吸氢量接近60min内总的吸氢量;随着吸/放氢循环次数增加,储氢材料中会生成MgH_2而导致储氢量递减,其中ZK60-Fe吸氢量递减速率减缓最快,仅吸/放氢循环了50次就开始减缓;这3种储氢材料经多次吸/放氢循环后均会出现微粉化,微粉化增多和吸氢量减少主要发生在循环吸/放氢初期。  相似文献   

8.
采用合金化的方法向富钛储氢合金FeTi1.2中添加少量LaNi5以形成四元系合金FeTi1.2 xwt%LaNi5来改善FeTi1.2合金的储氢性能,虽然XRD没有检出合金中有LaNi5相的存在,但是FeTi1.2合金的储氢性能特别是活化性能得到了改善,FeTi1.2 xwt%LaNi5合金还具有较高的储氢量,293K吸氢的FeTi1.2 2wt%LaNi5合金在333K时的放氢量为186.4ml/g,明显超过FeTi1.2合金的172.3ml/g。  相似文献   

9.
研究了高温退火处理对V30Ti33Cr27Fe10贮氢合金性能与结构的影响。结果表明高温退火使放氢平台变平,平台压降低,减小了合金吸放氢后的体胀,改变了合金晶粒的形态,改善了合金基体的组织均匀性。随保温时间延长,合金晶粒长大,晶胞体积减小,吸放氢量降低,BCC主相中析出越来越多的富Ti相,富Ti相中Fe含量随保温时间延长而减少。1523K保温30min的合金具有最大的室温吸放氢量,分别为3.679,5和2.14%(质量分数);保温3h的合金具有最好的室温吸氢动力学性能,5min内就能达到其饱和吸氢量的80%。  相似文献   

10.
采用高能球磨法和放电等离子体烧结(SPS)技术,以包含100%长周期堆垛有序结构(LPSO)相Mg85Zn6Y9镁合金为原料,通过将其球磨成纳米晶颗粒后与Mg-9Al-1Zn(AZ91)镁合金雾化颗粒进行机械混合,并在350℃烧结温度下成功制备出不同质量分数(0~30wt%)的LPSO相Mg85Zn6Y9颗粒增强AZ91复合材料(Mg85Zn6Y9/AZ91)。采用光学显微镜(OM)、SEM及TEM对Mg85Zn6Y9/AZ91复合材料的微观组织结构进行表征;采用XRD分析其固溶处理前后的相转变;与此同时对复合材料进行显微硬度与压缩试验,综合研究其微观组织与力学性能的关系。相关结果表明,Mg85Zn6Y9颗粒经3 h高能球磨后颗粒尺寸显著减小,硬度随晶粒细化而提升。Mg85Zn6Y9增强颗粒主要分布在AZ91基体颗粒边界处,随着Mg85Zn6Y9质量分数的增加,增强相颗粒有相互结合成连续网格状趋势。增强颗粒与基体界面处未见明显过渡层,基体界面处的β相经400℃×24 h固溶处理后进入基体,部分增强颗粒亦转变为Mg相。本实验条件下制备的最佳性能的20wt% Mg85Zn6Y9/AZ91复合材料经固溶处理后的室温屈服强度从200 MPa转变为230 MPa,屈服强度均较未添加Mg85Zn6Y9的AZ91镁合金有较大的提高。  相似文献   

11.
机械合金化(Mg+Mg2 Ni)+TiO2合金的储氢性能   总被引:1,自引:0,他引:1  
用机械合金化法合成了(Mg Mg2Ni) TiO2储氢合金,借助XRD分析了TiO2的加入对合金的物相结构的影响,SEM考察了合金的形貌.TiO2在合金的吸放氢过程中起到很好的催化作用,降低合金放氢温度并且提高合金储氢量,(Mg Mg2Ni) 10wt%TiO2合金在573K下的储氢量是5.84wt%.  相似文献   

12.
针对两种新型稀土型储氢合金La0.5Y0.5Ni4.8Mn0.1Al0.1和La0.5Y0.5Ni4.8Al0.2的储氢特性进行研究分析。实验表明,相同温度下,La0.5Y0.5Ni4.8Mn0.1Al0.1和La0.5Y0.5Ni4.8Al0.2合金的PCT曲线基本重合,且都具有优良的吸氢动力学性能;相比之下,后者的滞后系数要小于前者,吸氢量较大,吸氢速率也较快,故其储氢性能较优。300次吸放氢循环实验结果表明,La0.5Y0.5Ni4.8Al0.2合金的吸氢动力学性能虽然略有下降,但抗粉化性能较好。  相似文献   

13.
采用氢气反应球磨法,将煤基微晶碳及少量Ni和Al添加到镁粉中在1MPa氢气中球磨3h制得储氢材料67Mg29C3Ni1Al.放氢测试结果表明,温度越高,放氢速度越快,放氢量越大,数据拟舍得出放氢反应为表观一级反应.根据阿伦尼乌斯方程计算得出,在300~350℃范围内,放氢反应表观活化能为(138.0±6)kJ/mol.与储氢材料70Mg30C及纯MgH2相比,微晶碳和催化剂Ni、Al缩短了储氢材料的放氢时间,加快了放氢速度,提高了放氢量,降低了表观活化能,放氢动力学性能得到了改善.  相似文献   

14.
利用机械合金化方法制备了Li-N-H络合氢化物,并研究B、C作为催化剂对其储氢性能的影响. 结果表明:LiNH2、Li2NH为Li-N-H络合氢化物的主要储氢相,随B的加入,储氢相的非晶化程度提高. 虽然B、C的添加均使储氢量下降,但n(B)∶n(C)=1∶2的混合添加提高了有效储氢量,同时也提高吸放氢动力学性能;B的添加可有效降低可逆吸放氢温度,适当增加球磨时间,有利于提高可逆吸放氢量.  相似文献   

15.
在氩气保护下,采用机械合金化制备Mg-Al合金,并研究二维结构材料B、SG及MG的添加对Mg-Al合金储氢性能的影响。试验结果显示,合金材料主要由Mg17Al12相组成,在碳素材料的催化作用下,Mg-Al合金的综合储氢性能得到明显提高。Mg-Al合金的初始放氢温度为575 K,添加SG或MG后合金材料的初始放氢温度分别降低了64 K和82 K,脱氢峰值温度也分别降低了76 K和74 K,而Mg-Al合金材料放氢过程的表观活化能则从328.9 k J/mol分别下降到231.5 k J/mol和211.9 k J/mol。  相似文献   

16.
采用磁悬浮感应熔炼方法制备了Ti_(10)V_(83-x)Fe_6ZrMn_x(x=0、2、4、6)储氢合金,系统研究了Mn含量对合金微观结构和储氢特性的影响.XRD及SEM分析表明,无Mn合金(x=0)具有体心立方(bcc)结构的Ti-V基固溶体单相结构,而含Mn合金(x=2~6)均由bcc主相和C14型Laves第二相组成;随着Mn含量的增加,合金bcc主相的晶格常数和晶胞体积逐渐减小.储氢性能测试表明:该系列合金的吸氢动力学性能较好,在室温和4MPa初始氢压条件下,含Mn合金无需氢化孕育期就能快速吸氢;随着Mn含量的增加,合金的P-C-T放氢平台倾斜度逐渐减小,333K放氢平台压力先增后减,并在x=4达到最高;但合金的室温吸氢容量和333K有效放氢容量随Mn含量的增加而逐渐降低.  相似文献   

17.
采用水热法合成纳米Ce1-x(Eu0.5La0.5)xO2及Ce1-x(Fe0.5La0.5)xO2固溶体, 通过结构及光谱性能分析表征了掺杂效应。与纯CeO2--相比, CeO2基固溶体的晶胞参数变大, 紫外漫反射的吸收边发生移动, 拉曼光谱的F2g特征振动峰向低波数方向移动。将掺杂固溶体作为添加剂与Mg2Ni合金混合进行球磨处理, 对得到的复合材料进行结构及储氢动力学表征。XRD结果表明, 复合材料的纳米晶比例升高。储氢动力学测试结果表明, 固溶体添加剂使材料表面反应的可逆程度得到优化, Mg2Ni合金体内的氢原子扩散速率及氢扩散系数也得到了提高。  相似文献   

18.
以不经压制的Mg、Ni混合粉末为原料,利用氢化燃烧合成法在合成温度850 K和1.8 MPa初始合成氢压下制备了镁基储氢合金氢化物Mg2NiH4,并利用XRD及PCT仪分析了其物相组成和储氢性能.研究表明,产物由单一物相Mg2NiH4组成,无未反应的Ni和不完全氢化的Mg2NiH0.3;相对于传统熔炼法制备的Mg2Ni,氢化燃烧合成产物具有更高的氢化活性,在没有任何活化处理的前提下,第一次吸氢就能以很快的速度达到饱和吸氢量,同时在任何吸氢温度下均具有较好的吸氢动力学性能,且随温度的降低,最大吸氢量降低幅度较小,平台压和吸放氢温度的关系为:lgP(0.1 MPa)=-3 187.6/ T 6.362 4(吸氢),lgP(0.1 MPa)=-3 468.4/T 6.694 3(放氢).  相似文献   

19.
为改善Ti(Cr-Mn)2 AB2型合金的储氢性能,采用A侧过化学计量和过渡金属部分替代Mn进行多元合金化,系统研究了Tix(Cr-Mn-M)2(x=1.0,1.1;M=V、Fe、Ni、Cu)合金的储氢性能.研究结果表明,V、Fe、Ni、Cu部分替代Mn进行多元合金化后,合金主相仍保持C14(MgZn2)型Laves相,合金晶胞体积增大.合金化元素部分替代Mn后合金的活化性能得到明显改善,合金吸放氢量增大,吸放氢压力滞后减小.除Fe使合金放氢平台压力有所升高外,其余合金化元素均使合金的吸放氢平衡压力有不同程度的降低,这是由于合金的晶胞体积增大所致.在所形成的合金中,以Ti1.1Cr1.2Mn0.5CuO0.3的综合性能最好,其室温下吸放氢量分别达到1.95%和1.72 9,6(质量分数).采用该合金与自制的轻质高压储氢容器(工作压力为40MPa)复合组成金属氢化物复合式高压储氢器,对其储氢密度的计算结果表明,当储氢合金的填充量(体积分数)达到0.20时,该复合式储氢器总的体积储氢密度将提高57%.  相似文献   

20.
采用PdCl2溶液浸渍-焙烧-还原的方法制备出载钯硅藻土(Palladium/Kieselguhr,简称Pd/K),对其进行物相分析、形貌观察、吸放氢PCT以及吸氢动力学测量,研究了1000次和2000次热致吸放氢循环后的储氢性能.结果表明,热致循环前后Pd/K的吸放氢PCT曲线基本相同,吸氢量稍有降低,动力学性能明显...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号