首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
本文根据国家电网IT设备识别的具体应用场景的特点,通过改进Faster-RCNN实现设备的精确识别定位,进而提高了电网数据中心管理的效率.文章主要在注意力机制、初始锚框调整以及锚框融合等方面进行改进.通过与常见图像算法的横向比较发现改进后的模型在收敛速度上提高了30%,精度上提高了1%.  相似文献   

3.
4.
为了有效识别真实课堂中的学生行为,提出一种基于改进YOLOv8s模型的课堂行为识别方法。在YOLOv8s主干网络中融入轻量级坐标注意力机制Coordinate Attention,提高模型特征学习能力;在特征融合模块借鉴加权双向特征金字塔网络BIFPN与重参数化模块Diverse-Branch Block,对YOLOv8s中的特征金字塔网络PANet进行改进,提高模型的特征整合能力。实验结果显示,改进后的模型YOLOv8s-CB比原始模型的平均精度均值提升了1.7个百分点,达到92.4%,表明该算法在实时检测课堂学生行为识别任务中具有更大优势。  相似文献   

5.
针对传统的淡水鱼类图像识别方法速度慢、需要人工提取特征等问题,提出一种基于改进Res2Net模型的淡水鱼类图像识别算法。提出的改进方案如下:首先使用CELU激活函数代替ReLu激活函数;接着将残差块与混合注意力网络相结合;最后使用三个3×3卷积核替代Res2Net模型中第一个卷积层的7×7卷积核,同时在下采样的残差连接中加入平均池化层。实验结果表明,改进的网络在淡水鱼类图像分类上达到了96.34%的准确率,比Res2Net的准确率高3.67%,具有更加优异的性能,可为淡水鱼类识别提供参考。  相似文献   

6.
史文旭  鲍佳慧  姚宇 《计算机应用》2005,40(12):3558-3562
为解决目前的遥感图像目标检测算法存在的对小尺度目标检测精度低和检测速度慢等问题,提出了一种基于深度学习的遥感图像目标检测与识别算法。首先,构建一个含有不同尺度大小的遥感图像的数据集用于模型的训练和测试;其次,基于原始的多尺度单发射击(SSD)网络模型,融入了设计的浅层特征融合模块、浅层特征增强模块和深层特征增强模块;最后,在训练策略上引入聚焦分类损失函数,以解决训练过程中正负样本失衡的问题。在高分辨率遥感图像数据集上进行实验,结果表明所提算法的检测平均精度均值(mAP)达到77.95%,相较于SSD网络模型提高了3.99个百分点,同时检测速度为33.8 frame/s。此外,在拓展实验中,改进算法对高分辨率遥感图像中模糊目标的检测效果也优于原多尺度单发射击网络模型。实验结果说明,所提改进算法能够有效地提高遥感图像目标检测的精度。  相似文献   

7.
红外图像由于分辨率低、纹理细节不足,且缺乏颜色信息,导致目标成像模糊,检测难度大。基于深度学习的红外目标检测技术,通过运用神经网络自动提取复杂的目标特征,大大提高了检测精度和检测效率,在自动驾驶、安防监控、军事侦察等领域得到了非常广泛的应用。该文对红外目标检测面临的困难和挑战进行了详细分析,并从数据增强、迁移学习、视觉注意力机制、多尺度特征融合、多模态图像融合和轻量化改进等六个方面,对基于深度学习的红外目标检测研究改进方向进行了系统阐述。针对红外目标检测数据集缺乏的问题,梳理汇总了11个红外目标检测数据集。同时,结合当前发展现状,对红外目标检测的未来发展方向进行了展望,可为其他研究者提供参考借鉴。  相似文献   

8.
光学相干断层成像(optical coherence tomography, OCT)是一种具有无接触、高分辨率等特点的新型眼科医学诊断方法, 现在已经作为医生临床诊断眼科疾病的重要参考物, 但人工分类疾病费时费力, 视网膜病变的早期发现和临床诊断至关重要. 为了解决该类问题, 本文提出了一种基于改进MobileNetV2神经网络对视网膜OCT图像多分类识别方法. 此方法利用特征融合技术处理图像并设计增加注意力机制改进网络模型, 二者在极大程度上提高OCT图像的分类准确率. 与原有算法相比, 分类效果具有明显提升, 本文模型的分类准确率、召回值、精确度、F1值分别达到98.3%、98.44%、98.94%、98.69%, 已经超越人工分类的准确率. 此类方法不仅在实际诊断中加快诊断流程、降低医生负担、提高诊断质量, 同时也为眼科医疗研究提供新的方向.  相似文献   

9.
史文旭  鲍佳慧  姚宇 《计算机应用》2020,40(12):3558-3562
为解决目前的遥感图像目标检测算法存在的对小尺度目标检测精度低和检测速度慢等问题,提出了一种基于深度学习的遥感图像目标检测与识别算法。首先,构建一个含有不同尺度大小的遥感图像的数据集用于模型的训练和测试;其次,基于原始的多尺度单发射击(SSD)网络模型,融入了设计的浅层特征融合模块、浅层特征增强模块和深层特征增强模块;最后,在训练策略上引入聚焦分类损失函数,以解决训练过程中正负样本失衡的问题。在高分辨率遥感图像数据集上进行实验,结果表明所提算法的检测平均精度均值(mAP)达到77.95%,相较于SSD网络模型提高了3.99个百分点,同时检测速度为33.8 frame/s。此外,在拓展实验中,改进算法对高分辨率遥感图像中模糊目标的检测效果也优于原多尺度单发射击网络模型。实验结果说明,所提改进算法能够有效地提高遥感图像目标检测的精度。  相似文献   

10.
针对遥感图像中背景复杂目标、车辆小导致的成像模糊的目标漏检问题,提出一种基于YOLOv5s的改进模型。改进模型设计一种新的主干网络结构:改进模型的主干特征提取选用RepVGG网络,同时在主干网络中加入注意力机制CoordAttention来提高模型小目标的感知能力。增加多尺度特征融合,提高改进模型对于小目标的检测精度,边框回归的损失函数选择使用DIoU,帮助改进模型实现更加精准定位。实验结果表明,改进后的YOLOv5模型在遥感图像的目标检测,相较于原始模型在小目标车辆中检测精度提升5.3个百分点,与Faster R-CNN相比mAP提升16.88个百分点。改进后的模型与主流的检测算法相比能有较大的检测精度提升,相较于原始的YOLOv5s模型在遥感图像小车辆检测有更好的检测精度。  相似文献   

11.
针对数据中心的服务器设备运行状态监测的现实需求以及现有方法的缺点,提出了基于视觉图像的检测服务器面板工作状态指示灯颜色特征的方法。引入YOLO算法完成图像中目标的分类和位置回归检测任务;为了满足现场嵌入式检测设备运行需求,将YOLO算法中的主干网络替换为MobileNet,实现了检测网络的参数压缩,在保证检测效果的前提下减少了网络运算力的消耗;制作了基于图像增强方法的数据集用于网络训练,得到了mAP为60.3,故障信号检测准确率为96.1%,漏检率1.4%的效果;在树莓派终端上进行实验,单张图片检测时间为1.5s,满足工程采样周期要求。文章提供了低成本、高效率、可扩展的服务器设备运行状态视觉检测接口。  相似文献   

12.
针对肿瘤细胞图像与正常组织图像之间具有强相似性、边界模糊以及染色变化大等特点,提出了基于TransUNet网络的优化改进分割模型。此分割模型在以TransUNet为主干网络的基础上于编码器部分引入注意力机制,抑制不相关的部分以突显深层特征的语义信息。同时,改变上采样过程中的融合方式,引入BiFusion模块进行选择性地融合,从而使特征数据能够保留更多高分辨率细节信息。该分割模型在Kaggle脑部低级别胶质瘤数据集上验证。实验结果表明,改进后算法的均交并比,召回率和平均精度均值分别为: 97.31%,99.91%和98.72%,与目前医学图像分割的主流方法相比具有更优的性能。  相似文献   

13.
为提升黑色素瘤图像二分类问题的准确率,针对黑色素瘤图像中存在的有效特征不明显的问题,借鉴特征金字塔思想,提出一种改进的残差网络的黑色素瘤图像分类模型。使用迁移学习,以预训练的ResNet50模型为基础结构,利用改进的注意力机制筛选有效特征,用空洞卷积改进Inception结构并基于该结构构建额外的分支以不同方式提取并融合特征,用加权的方式把分支的特征和ResNet50模型主干提取的特征进行融合。所提模型在ISIC 2017数据集上可以取得87.8%分类准确率,表明了其对解决黑色素瘤图像二分类问题的有效性。  相似文献   

14.
基于可见光视觉图像的表面裂缝识别为非接触式,不受被测对象材质限制,可在线自动检测,具有速度快、成本低和精度高等优势。首先较为全面地搜集了典型的路面裂缝公开数据集,整理归纳了样本特征及其随机可变影响因素,并比较了传统手工设计特征工程、机器学习和深度学习3种主要裂缝识别方法的优缺点。然后,从网络架构、性能和效果方面着重评述了自搭架构、迁移学习和编码-解码器等易于训练和部署的深度学习算法新进展,通过算法优化和算力提升可显著提高识别的效果和性能,测试结果表明能够在低算力平台上实现裂缝补丁级快速检测和像素级实时检测。  相似文献   

15.
针对风机设备油液渗漏影响风机正常运行亟需解决的对风机设备油污的识别问题,提出了一种基于改进深度学习的风机油污检测方法。基于深度学习在目标检测中的应用特点,对目标检测网络YOLOv5n(You Only Look Once v5n)进行改进,将原网络中的非极大抑制(Non Maximum Suppression,NMS)替换为Soft-NMS,降低了网络的误检率,添加CA (Coordinate Attention)注意力机制,增强了模型对目标的定位能力,改进原网络损失函数为α-IoU(Alpha- Intersection over Union)损失函数,提高了边界框检测的准确度。实验结果表明:模型平均精度提升了8.1%,查全率提高了19.1%,网络推理速度提高了28.6%。改进后的模型能准确检测风机油污,有效解决了风机实际运行中油液渗漏所带来的问题。  相似文献   

16.
航空遥感图像目标检测旨在定位和识别遥感图像中感兴趣的目标,是航空遥感图像智能解译的关键技术,在情报侦察、灾害救援和资源勘探等领域具有重要应用价值。然而由于航空遥感图像具有尺寸大、目标小且密集、目标呈任意角度分布、目标易被遮挡、目标类别不均衡以及背景复杂等诸多特点,航空遥感图像目标检测目前仍然是极具挑战的任务。基于深度卷积神经网络的航空遥感图像目标检测方法因具有精度高、处理速度快等优点,受到了越来越多的关注。为推进基于深度学习的航空遥感图像目标检测技术的发展,本文对当前主流遥感图像目标检测方法,特别是2020—2022年提出的检测方法,进行了系统梳理和总结。首先梳理了基于深度学习目标检测方法的研究发展演化过程,然后对基于卷积神经网络和基于Transformer目标检测方法中的代表性算法进行分析总结,再后针对不同遥感图象应用场景的改进方法思路进行归纳,分析了典型算法的思路和特点,介绍了现有的公开航空遥感图像目标检测数据集,给出了典型算法的实验比较结果,最后给出现阶段航空遥感图像目标检测研究中所存在的问题,并对未来研究及发展趋势进行了展望。  相似文献   

17.
基于卷积神经网络的垃圾图像分类算法   总被引:1,自引:0,他引:1  
垃圾分类作为资源回收利用的重要环节之一,可以有效地提高资源回收利用效率,进一步减轻环境污染带来的危害.随着现代工业逐步智能化,传统的图像分类算法已经不能满足垃圾分拣设备的要求.本文提出一种基于卷积神经网络的垃圾图像分类模型(Garbage Classification Network, GCNet).通过构建注意力机制,模型完成局部和全局的特征提取,能够获取到更加完善、有效的特征信息;同时,通过特征融合机制,将不同层级、尺寸的特征进行融合,更加有效地利用特征,避免梯度消失现象.实验结果证明, GCNet在相关垃圾分类数据集上取得了优异的结果,能够有效地提高垃圾识别精度.  相似文献   

18.
19.
利用卷积神经网络进行目标检测时,提取的卷积特征具有很强的平移不变性,这将削弱模型的定位性能。事实上,目标对象通常具有不同的子区域特征和宽高比特性,但在目前流行的两阶段目标检测框架中,很少考虑这些具有平移尺度敏感性的特征成分。为了优化模型的特征表达,将在两阶段目标检测框架中引入与子区域特征和宽高比特性相关的注意力特征库,并生成注意力特征图对原始的ROI池化特征进行优化。另外,在注意力特征图的辅助下,模型特征维度可以有效地进行缩减。实验结果表明,引入注意力模块后,模型的检测精度和检测速度有明显提升。  相似文献   

20.
人类具有很强的草图识别能力. 然而, 由于草图具有稀疏性和缺少细节的特点, 目前的深度学习模型在草图分类任务上仍然面临挑战. 目前的工作只是将草图看作灰度图像而忽略了不同草图类别间的形状表示差异. 提出一种端到端的手绘草图识别模型, 简称双模型融合网络, 它可以通过相互学习策略获取草图的纹理和形状信息. 具体地, 该模型由2个分支组成: 一个分支能够从图像表示(即原始草图)中自动提取纹理特征, 另一个分支能够从图形表示(即基于点的草图)中自动提取形状特征. 此外, 提出视觉注意一致性损失来度量2个分支之间视觉显著图的一致性, 这样可以保证2个分支关注相同的判别性区域. 最终将分类损失、类别一致性损失和视觉注意一致性损失结合完成双模型融合网络的优化. 在两个具有挑战性的数据集TU-Berlin数据集和Sketchy数据集上进行草图分类实验, 评估结果说明了双模型融合网络显著优于基准方法并达到最佳性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号