首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孙亚颇 《功能材料》2023,(3):3174-3178
选择不饱和聚酯树脂为基体材料,以玻璃纤维为增强相,采用模压成型工艺制备了不同玻璃纤维掺杂量(0,5%,10%,15%和20%(质量分数))的聚酯玻纤复合材料,分析了玻璃纤维含量对复合材料的微观形貌、热稳定性、拉伸性能和弯曲性能的影响。结果表明,聚酯玻纤复合材料中玻璃纤维和不饱和聚酯主要以物理作用为主,适量的玻璃纤维掺杂后能与聚酯基材紧密结合,分布具有方向性。随着玻璃纤维掺杂量的增大,聚酯玻纤复合材料的分解温度先增大后减小,且耐热性能提高,当玻璃纤维的掺杂量为15%(质量分数)时,复合材料的T50%达到最大值368.47℃。力学性能测试表明,随玻璃纤维掺杂量的增大,复合材料的拉伸强度和冲击强度先增大后减小,断裂延伸率和弯曲强度持续降低,当玻璃纤维的掺杂量为15%(质量分数)时,复合材料的力学性能最优,拉伸强度最大为26.1 MPa,断裂延伸率为2.6%,冲击强度达到最大值8.1 MPa,弯曲强度为30.5 MPa。  相似文献   

2.
郑天麒 《功能材料》2022,(12):12147-12151
以环氧树脂E51为基础材料,碳纤维为增强材料,制备出了不同碳纤维掺杂量(0,3%,6%,9%(质量分数))的改性环氧树脂基复合材料,研究了碳纤维掺杂量对环氧树脂基复合材料力学性能、微观形貌、热稳定性和导热性能的影响。结果表明,适量碳纤维的掺杂提高了环氧树脂基复合材料的力学性能、热稳定性和导热性能。随着碳纤维掺杂量的增加,改性环氧树脂基复合材料的拉伸强度、断裂延伸率、弯曲强度和弯曲模量均先增大后降低,当碳纤维的掺杂量为6%时,复合材料的拉伸强度、断裂延伸率、弯曲强度和弯曲模量均达到了最大值,分别为48.5 MPa, 1.86%,85.6 MPa和3.09 GPa。随着碳纤维掺杂量的增加,复合材料的分解温度和残留量先升高后降低,当碳纤维的掺杂量为6%时,复合材料的分解温度和残留量达到最大,分别为453.7℃和4.9%。复合材料的导热系数随碳纤维掺杂量的增加而增大,当碳纤维的掺杂量<6%时,导热系数增长速率较快。综合分析可知,碳纤维的最佳掺杂量为6%。  相似文献   

3.
《功能材料》2021,52(7)
以环氧树脂E51作为基质材料,纳米纤维素(CNF)作为掺杂材料,采用混溶法制备了一系列不同CNF掺量(0%,0.3%,0.6%和0.9%(质量分数))的环氧树脂复合材料。通过FT-IR、SEM和力学性能测试等方法分析了复合材料的结构、形貌和力学性能。结果表明,掺杂CNF的环氧树脂复合材料体系均已无丙酮存在,且CNF已成功掺入了环氧树脂复合材料中。随着CNF的掺入,环氧树脂复合材料的冲击强度、抗拉强度、弹性模量和延伸率均呈现先增大后降低的趋势,且整体均高于纯环氧树脂材料。当CNF的掺量为0.6%(质量分数)时,复合材料的冲击强度、抗拉强度、延伸率和弹性模量均达到最大值,分别为29.5 kJ/m~2,87 MPa, 5.8%和2 846 MPa;当CNF的掺量过高时,复合材料的冲击强度、抗拉强度、延伸率和弹性模量均有所下降。未掺杂CNF的纯环氧树脂材料的断面较为光滑平整,断面的断裂方向整体一致,断裂方式为脆性断裂;当掺入CNF后,复合材料的断面均较为粗糙,并且断面的断裂方向变得不均匀和多元化,断裂方式为韧性断裂。  相似文献   

4.
梁学杰 《功能材料》2023,(3):3217-3223
针对水泥混凝土存在的抗折强度不足、耐久性能偏低等问题,以环氧树脂为掺杂相,制备了不同环氧树脂掺量(0%,3%,6%,9%(质量分数))的改性水泥混凝土,分析了环氧树脂对水泥混凝土力学性能、微观形貌、耐久性能的影响。结果表明,环氧树脂的掺杂加速了水化反应的进行,混凝土的裂纹和孔隙数量减少,致密度提高。混凝土的抗压强度和抗折强度均随环氧树脂掺杂量的增大而先增大后减小,6%(质量分数)环氧树脂掺杂量的混凝土在养护28 d时抗压强度和抗折强度分别达到最大值43.8和7.9 MPa,相比未掺杂环氧树脂的混凝土分别提高了18.70%和29.51%。随着环氧树脂掺杂量的增大,混凝土的氯离子扩散系数先降低后增高,6%(质量分数)环氧树脂掺杂量的混凝土养护28 d的氯离子扩散系数最低为7.7×10-8 cm/s,抗氯离子腐蚀性能最佳。在冻融循环次数达到80次时,6%(质量分数)环氧树脂掺杂量的混凝土的质量损失率最低为-0.13%,相对动弹性模量最大为94.86%,磨损量最低为0.66 kg/m2,磨损量降低率达到46.77%,具有优异的耐久性能。  相似文献   

5.
《功能材料》2021,52(7)
借助超声分散,采用固化处理制备了不同纳米粘土掺量(0,1%,3%,5%和7%(质量分数))的纳米粘土/环氧树脂复合材料,研究了纳米粘土掺量对复合材料性能的影响。通过X射线衍射(XRD)、力学性能测试、扫描电镜(SEM)等对复合材料进行了表征。结果表明,不同掺杂比例的纳米粘土和环氧树脂都均匀结合,纳米粘土掺量为7%(质量分数)的复合材料衍射峰强度最高,其结晶性能最佳;随着纳米粘土掺量的增加,复合材料的拉伸模量、极限抗压强度和断裂韧性KIC值整体均高于纯环氧树脂,而复合材料的破坏应变低于纯环氧树脂;当纳米粘土掺量为1%(质量分数)时,复合材料的极限抗拉强度略有提高,但随着纳米粘土掺量的继续增加,复合材料的极限抗拉强度逐渐降低;当纳米粘土掺量为5%(质量分数)时,复合材料的拉伸模量达到3 513 MPa,相比纯环氧树脂的3 300 MPa,增加了6.5%;当纳米粘土掺量为7%(质量分数)时,复合材料的断裂韧性KIC值达到1.97 MPa·m~(1/2),相比纯环氧树脂的1.60 MPa·m~(1/2),增加了23.1%;纯环氧树脂的断裂表面光滑无褶皱,断裂时裂纹没有产生无偏离的扩展,而复合材料的断裂表面随纳米粘土掺量的增加均趋于粗糙,裂纹在扩展过程中发生了偏移。  相似文献   

6.
翟思敏  黄金霞 《功能材料》2024,(3):3102-3106+3121
环氧树脂基混凝土作为一种绿色环保的建筑材料,在道路修补和保温建筑中应用广泛。以环氧树脂E44为原料,二甲苯为稀释剂,纳米玻璃纤维为填料,制备了复合环氧树脂基混凝土,研究了不同纳米玻璃纤维长度对混凝土微观形貌、力学性能和保温性能的影响。结果表明,纳米玻璃纤维的掺杂发挥了“晶种”作用,促进了水化反应的进行,提高了环氧树脂基混凝土的密实度。纳米玻璃纤维长度的适当增加提高了混凝土与纤维的结合强度,当纳米玻璃纤维长度为8 mm时,混凝土的形貌最佳。随着纳米玻璃纤维长度的增加,混凝土的抗压强度和抗折强度先增大后降低。养护28 d,当纳米玻璃纤维长度为8 mm时,混凝土的抗压强度和抗折强度均达到最大值,分别为21.93和4.59 MPa。纳米玻璃纤维的掺杂改善了混凝土的孔结构,降低了导热系数,提高了保温性能,当纳米玻璃纤维长度为8 mm时,混凝土导热系数最低为0.147 W/(m·K),保温性能最佳。  相似文献   

7.
崔衍刚  张锐  宁晓骏 《功能材料》2022,(7):7083-7087
以纳米CaCO3为增强材料,通过预聚体法制备了不同纳米CaCO3掺杂的聚氨酯复合材料,研究了纳米CaCO3改性聚氨酯复合材料的力学性能、微观形貌、磨损性能和热稳定性能。结果表明,纳米CaCO3的掺杂没有改变聚氨酯的结构,但改善了复合材料的微观形貌和整体的均匀性,提升了复合材料的力学性能、磨损性能和热稳定性。随着纳米CaCO3掺杂量的增加,改性聚氨酯复合材料的拉伸强度、断裂延伸率和残余量先升高后降低,磨损量先降低后升高。当纳米CaCO3的掺杂量为3%(质量分数)时,复合材料的拉伸强度、断裂延伸率和残余量达到了最大值,分别为33.7 MPa、510.2%和4.4%,磨损量最低为50.1 mg。综合分析可知,纳米CaCO3的最佳掺杂量为3%(质量分数)。  相似文献   

8.
用硅烷偶联剂对磨碎玻璃纤维表面进行改性,并制备玻璃纤维/环氧树脂复合材料,采用超声分散对复合材料分散处理,探讨不同磨碎玻璃纤维粉质量比对环氧树脂基复合材料压缩、拉伸性能的影响。研究表明,添加磨碎玻璃纤维后,环氧树脂的强度和硬度显著增强。当磨碎玻璃纤维掺量在15%~25%之间时,复合材料的综合力学性能最好,其压缩强度、压缩模量、拉伸强度最高达到67.1 MPa、1.68 GPa、57.6 MPa,与纯环氧树脂相比提高了24%、35%、34%;断裂伸长率随着掺量的增加逐渐降低,当含量达到30%时比纯环氧树脂的降低了48%,表明添加玻璃纤维粉后环氧树脂脆性增强。目数小粒径较大的玻璃纤维粉对环氧树脂力学性能增强效果更优,但影响程度不如含量对复合材料力学性能的影响大。  相似文献   

9.
李争  李宏亮  孙晋明 《功能材料》2022,(9):9231-9236
以不同质量分数(0,1%,2%,3%)的水性环氧树脂为改性剂,制备了高性能环氧树脂透水混凝土,研究了环氧树脂掺杂量对透水混凝土力学性能、透水性能、抗冻性能和微观形貌的影响。结果表明,适量的环氧树脂掺入透水混凝土后,可以增加骨料与砂浆之间的粘度,并提高其结合强度,从而提高了改性透水混凝的力学性能、透水性能和抗冻性能;随着环氧树脂掺杂量的增加,改性透水混凝土的抗压强度和抗折强度先增大后减小,透水系数和质量损失率先减小后轻微增大;当环氧树脂的掺杂量为2%(质量分数)时,28 d的抗压强度和抗折强度达到最大值,分别为13.17和1.26 MPa,透水系数和质量损失率(60次冻融循环下)达到了最小值,分别为4.84 mm/s和0.3233%;环氧树脂的掺杂提高了透水混凝土的结构致密性,当环氧树脂的掺杂量为2%(质量分数)时,改性透水混凝土的结构致密性最高,微裂纹较少,抗冻性能最佳。  相似文献   

10.
赵云丽  侯风  崔二江 《功能材料》2023,(12):12136-12141
为了获得优异保温性能和高强度的节能保温砂浆,以普通硅酸盐水泥P.O 42.5作为基质材料,通过在砂浆中添加适量的碳纤维作为增强材料,以此制备了碳纤维建筑节能保温砂浆,研究了碳纤维的掺杂量对保温砂浆的力学性能、收缩率及保温性能的影响,并建立了保温砂浆导热系数和表观密度的关系式。结果表明,随着碳纤维掺杂量的增大,保温砂浆的表观密度先降低后轻微升高,稠度、抗压强度和抗折强度均先升高后降低。在28 d龄期,当碳纤维的掺杂量为0.5%(质量分数)时,保温砂浆中网状结构的致密性最好,抗压强度和抗折强度均达到最大值,分别为46.1和6.8 MPa,其中抗折强度提高了23.64%,改善效果高于抗压强度。随着碳纤维掺杂量的增大,保温砂浆的收缩率持续降低,导热系数先降低后增大,当碳纤维的掺杂量为0.5%(质量分数)时,保温砂浆的导热系数达到最低值为0.0583 W/(m·K),保温性能最佳。通过拟合保温砂浆的导热系数和表观密度发现两者为线性相关,方程的拟合度为98.4%。综合可知,碳纤维的最佳掺杂量为0.5%(质量分数)。  相似文献   

11.
孙亚颇 《功能材料》2023,(1):1115-1119
以普通硅酸盐水泥P.O 42.5为基体材料,不同掺杂量(0,0.4%,0.8%和1.2%(质量分数))的纳米碳纤维为增强相,制备了纳米碳纤维增韧水泥基复合材料,研究了纳米碳纤维的掺杂量对水泥基复合材料晶体结构、力学性能和耐久性能的影响。结果表明,纳米碳纤维的掺杂在水泥基复合材料中未出现新的水化产物,但加速了水化反应的进行;纳米碳纤维的“连接”作用使水泥基复合材料的孔结构变得致密,裂纹和孔隙减少;随着纳米碳纤维掺杂量的增加,水泥基复合材料的抗压强度和抗折强度先增大后减小,当纳米碳纤维的掺杂量为0.8%(质量分数)时,水泥基复合材料28 d的抗压强度和抗折强度均达到了最大值,分别为82.4和13.1MPa;采用单面盐冻法对水泥基复合材料进行抗冻性能测试,发现纳米碳纤维的掺杂改善了水泥基复合材料的抗冻性能,当纳米碳纤维的掺杂量为0.8%(质量分数)时,水泥基复合材料在28次冻融循环后单位面积质量损失量最小为0.114 kg/m2。综合力学性能和耐久性能分析可知,纳米碳纤维的最佳掺量为0.8%(质量分数)。  相似文献   

12.
主要探讨了固化剂的掺量、存贮时间及环境因素对环氧树脂砂浆性能的影响.研究结果表明,固化剂掺量为30份/100份环氧树脂时,环氧树脂砂浆早期强度发展很快,3d抗折强度为7.2MPa,抗压强度为24.4MPa;后期强度发展稍慢,90d抗压强度为53.1MPa.固化剂掺量为10份/100份环氧树脂时,后期强度很大,90d抗压强度为96.9MPa,但早期强度发展较慢,固化时间长.40℃环氧树脂砂浆固化迅速,3d抗折强度即高于12.5MPa,抗压强度可达48.1MPa.  相似文献   

13.
刘延金  钟曦 《功能材料》2022,(12):12157-12161
表面未处理的碳纤维具有较大的惰性,为了改善碳纤维和环氧树脂的结合效果,通过将碳纤维浸入浓HNO3中,控制浸入时间,制备了碳纤维/环氧树脂复合保温材料。研究了浓HNO3处理时间对复合材料的微观形貌、力学性能和保温性能的影响。结果表明,浓HNO3的处理使碳纤维表面发生了氧化,凹槽数量增加,环氧树脂和碳纤维的结合强度增加。碳纤维/环氧树脂复合保温材料的拉伸强度和断裂延伸率均随浓HNO3处理时间的增加而先增大后降低,当浓HNO3处理时间为3 h时,复合材料的拉伸强度和断裂延伸率均达到最大值,分别为45.9 MPa和1.75%。在800℃下,当HNO3处理时间为3 h时,复合材料的残留质量最高为7.73%,热稳定性最佳。随着浓HNO3处理时间的增加,复合材料的导热系数先降低后轻微增加,当HNO3处理时间为3 h时,复合材料的导热系数最低为0.027 W/(m·K),具有良好的保温性能。  相似文献   

14.
以丙烯腈-丁二烯-苯乙烯共聚物(ABS)及玻璃纤维(GF)为原料,以苯乙烯-马来酸酐共聚物(SMA)和环氧树脂(E-poxyresin)作为界面相容剂,研究了界面相容剂对玻璃纤维增强ABS复合材料力学性能及界面粘接的影响。结果表明,加入SMA或环氧树脂,玻纤增强ABS复合材料的力学性能明显提高;SMA与环氧树脂复配有明显的协同效果,同时加入SMA和环氧树脂后的复合材料的性能更加优越,界面粘接性能得到很大的改善,在玻纤加入量为30%时,其拉伸强度、弯曲强度、冲击强度较未添加界面相容剂时分别提高了44%、29%、100%。  相似文献   

15.
周美容  戴丽 《功能材料》2023,(1):1127-1132
纳米碳纤维凭借着高的抗拉强度和弹性模量,被广泛应用于水泥混凝土的增韧剂。通过在混凝土材料中掺入不同含量(0,0.3%,0.6%和0.9%(质量分数))的纳米碳纤维,研究了纳米碳纤维掺杂量对混凝土力学性能和抗冻性能的影响。结果表明,纳米碳纤维的掺杂未生成新的产物,但加速了水化反应的进行,增加了改性混凝土的结构致密性,减小了孔隙和缺陷的数量。当纳米碳纤维的掺杂量为0.6%(质量分数)时,改性混凝土的形貌结构最佳。随着纳米碳纤维掺杂量的增加,改性混凝土的抗压强度、抗折强度和磨损量降低比率先增大后减小,单位面积的磨损量和80次冻融循环时刻的质量损失率先减小后增大。当纳米碳纤维的掺杂量为0.6%(质量分数)时,改性混凝土28 d的抗压强度和抗折强度达到最大值,分别为47.83和5.92 MPa,单位面积的磨损量最小为1.12%,磨损量降低比率最大为55.56%,80次冻融循环时刻的质量损失率最小为1.23%。综合各分析可知,纳米碳纤维的最佳掺杂量为0.6%(质量分数)。  相似文献   

16.
以超细玻璃纤维绵和环氧树脂为原料,制备了含量不同的超细玻纤环氧复合材料。由于超细玻璃纤维的引入,对入射声波的散射作用增加,因此该类材料具有较好的声音阻隔性能,同时,由于环氧树脂基复合材料本身较低的导热系数,该类材料同时具有较好的隔热性能。采用阻抗管测试方法、导热系数测定和冲击性测试,对复合材料的隔声隔热及抗冲击性进行了表征,结果表明,引入超细玻纤的环氧树脂复合材料隔声量能达到50dB以上,导热系数降低至0.167W/(m·K),具有良好的隔声隔热性能。  相似文献   

17.
为了研究连续单向纤维的层间混杂方式对复合材料力学性能及破坏方式的影响,采用碳纤维-玻璃纤维体积比为1∶1,以拉-挤成型法制备了具有不同层间混杂结构的连续单向纤维增强环氧树脂基复合材料,并研究了不同层间混杂结构的连续单向碳纤维-玻璃纤维增强环氧树脂基复合材料的力学性能及破坏形式。结果表明:具有层间混杂结构的复合材料抗拉强度处于纯碳纤维/环氧树脂复合材料和纯玻璃纤维/环氧树脂复合材料之间,复合材料的拉伸断裂方式为劈裂;具有层间混杂结构的复合材料的层间剪切强度均优于纯碳纤维/环氧树脂复合材料和纯玻璃纤维/环氧树脂复合材料,复合材料的剪切断裂方式为层间断裂。  相似文献   

18.
采用固相法制备99BeO陶瓷样品,系统研究了SiO2掺杂对99BeO高导热陶瓷微观结构及性能的影响。研究发现,随着SiO2含量的增加,99BeO陶瓷的抗折强度、密度、导热率以及电学性能均呈较明显的单峰分布。当SiO2掺杂量为0.8%(w)时,可获得性能优良、结构致密的高导热陶瓷,其抗折强度为248 MPa,密度为2.957 g/cm3,导热率为303 W/(m.K)。  相似文献   

19.
刘琼  刘科元  于晓琦  魏婧 《功能材料》2022,(8):8231-8236
以硅酸盐水泥P.O 42.5为基础材料、短切PAN基碳纤维为增强相制备了分散均匀的碳纤维水泥基复合材料,研究了不同掺杂量(0,0.3%,0.6%和0.9%(质量分数))短切PAN基碳纤维的水泥基复合材料的物相结构、微观形貌、力学性能、耐磨性能和抗碳化性能。结果表明,短切PAN基碳纤维的掺杂加速了水化反应的进行,没有产生新的水化产物,碳纤维在水泥基复合材料中呈三维错落分布,构成网格结构,提高了水化产物之间的结合强度,提高了水泥基复合材料的致密性,从而提高了水泥基复合材料的力学性能、耐磨性能和抗碳化性能。随着短切PAN基碳纤维掺杂量的增加,水泥基复合材料7和28 d的抗压强度和抗折强度均表现出先增大后降低的趋势,而质量损失率和碳化深度则表现出先降低后升高的趋势。当短切PAN基碳纤维的掺杂量为0.6%(质量分数)时,质量损失率达到最小值0.34%,养护7和28 d后,抗压强度达到了最大值69.3和86.4 MPa,抗折强度也达到了最大值11.1和14.1 MPa,而碳化深度达到最低值0.35和2.53 mm。综合分析可知,短切PAN基碳纤维的最佳掺杂量为0.6%(质量分数)。  相似文献   

20.
以2400tex无捻玻纤粗纱为原料,在SGA598型三维织机上制备出一种三维浅交弯联机织复合材料预制体,以20%(wt,质量分数)的氢氧化钠溶液作为侵蚀液在60℃的温度下,以浸泡的方式对玻璃纤维预制体进行处理;以环氧树脂E51和固化剂聚醚胺WHR-H023以质量配合比3∶1的比例组成树脂体系,通过真空灌注成型的方式制备出三维浅交弯联机织复合材料。采用原子力显微镜、万能材料试验机、扫描电镜等仪器来测试与验证氢氧化钠溶液对预制体的侵蚀效果及对复合材料力学性能的影响。结果表明:氢氧化钠溶液浸泡20min玻璃纤维后,玻璃纤维间产生了粘合作用,有利于提高复合材料力学性能,复合材料弯曲强度达到最大为602MPa;超过20min后,氢氧化钠溶液的侵蚀作用破坏了玻璃纤维的结构,影响了复合材料的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号