共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
当计算任务被转移到移动边缘计算(MEC)服务器上时,通过服务缓存能够降低获取和初始化服务应用程序的实时时延和带宽成本.此外,体验质量是驱动卸载决策的关键因素,有效利用有限的计算资源能够提升用户满意度.考虑一个边缘服务器帮助移动用户执行一系列计算任务的场景,建立混合整数非线性规划问题,提出一种基于深度确定性策略梯度(DD... 相似文献
3.
4.
车辆边缘计算允许车辆将计算任务卸载到边缘服务器,从而满足车辆爆炸式增长的计算资源需求。但是如何进行卸载决策与计算资源分配仍然是亟待解决的关键问题。并且,运动车辆在连续时间内进行任务卸载很少被提及,尤其对车辆任务到达随机性考虑不足。针对上述问题,建立动态车辆边缘计算模型,描述为7状态2动作空间的Markov决策过程,并建立一个分布式深度强化学习模型来解决问题。另外,针对离散—连续混合决策问题导致的效果欠佳,将输入层与一阶决策网络嵌套,提出一种分阶决策的深度强化学习算法。仿真结果表明,所提算法相较于对比算法,在能耗上保持了较低水平,并且在任务完成率、时延和奖励方面都具备明显优势,这为车辆边缘计算中的卸载决策与计算资源分配问题提供了一种有效的解决方案。 相似文献
5.
6.
移动边缘计算是解决机器人大计算量任务需求的一种方法。传统算法基于智能算法或凸优化方法,迭代时间长。深度强化学习通过一次前向传递即可求解,但只针对固定数量机器人进行求解。通过对深度强化学习分析研究,在深度强化学习神经网络中输入层前进行输入规整,在输出层后添加卷积层,使得网络能够自适应满足动态移动机器人数量的卸载需求。最后通过仿真实验验证,与自适应遗传算法和强化学习进行对比,验证了所提出算法的有效性及可行性。 相似文献
7.
针对移动边缘计算(Mobile Edge Computing,MEC)的计算卸载决策的问题,基于强化学习方法提出了一个在多用户的MEC 系统中的计算卸载决策算法(Offloading Decision algorithm based on Reinforcement Learning,ODRL).ODRL算法根据任务模... 相似文献
8.
9.
移动边缘计算(mobile edge computing, MEC)已逐渐成为有效缓解数据过载问题的手段, 而在高人流密集的场景中, 固定在基站上的边缘服务器可能会因网络过载而无法提供有效的服务. 考虑到时延敏感型的通信需求, 双层无人机(unmanned aerial vehicle, UAV)的高机动性和易部署性成为任务计算卸载的理想选择, 其中配备计算资源的顶层无人机(top-UAV, T-UAV)可以为抓拍现场画面的底层UAV (bottom-UAV, B-UAV)提供卸载服务. B-UAV搭载拍摄装置, 可以选择本地计算或将部分任务卸载给T-UAV进行计算. 文中构建了双层UAV辅助的MEC系统模型, 并提出了一种DDPG-CPER (deep deterministic policy gradient offloading algorithm based on composite prioritized experience replay)新型计算卸载算法. 该算法综合考虑了决策变量的连续性以及在T-UAV资源调度和机动性等约束条件下优化了任务执行时延, 提高了处理效率和响应速度, 以保证现场观众对比赛的实时观看体验. 仿真实验结果表明, 所提算法表现出了比DDPG等基线算法更快的收敛速度, 能够显著降低处理延迟. 相似文献
10.
在移动边缘计算中,本地设备可以将任务卸载到靠近网络边缘的服务器上进行数据存储和计算处理,以此降低业务服务的延迟和功耗,因此任务卸载决策具有很大的研究价值.首先构建了大规模异构移动边缘计算中具有多服务节点和移动任务内部具有多依赖关系的卸载模型;随后结合移动边缘计算的实际应用场景,提出利用改进的深度强化学习算法优化任务卸载策略;最后通过综合比较任务卸载策略的能耗、成本、负载均衡、延迟、网络使用量和平均执行时间等指标,分析了各卸载策略的优缺点.仿真实验结果表明,基于长短期记忆(long short-term memory, LSTM)网络和事后经验回放(hindsight experience replay, HER)改进的HERDRQN算法在能耗、费用、负载均衡和延迟上都有很好的效果.另外利用各算法策略对一定数量的应用进行卸载,通过比较异构设备在不同CPU利用率下的数量分布来验证卸载策略与各评价指标之间的关系,以此证明HERDRQN算法生成的策略在解决任务卸载问题中的科学性和有效性. 相似文献
11.
随着车联网应用服务体系日益丰富,计算资源有限的车辆难以处理这些计算密集和时延敏感的车联网应用。计算卸载作为移动边缘计算中的一种关键技术可以解决这一难题。对于车联网中动态的多车辆多路侧单元的任务卸载环境,提出了一种基于联邦深度强化学习的任务卸载算法。该算法将每辆车都看作是智能体,采用联邦学习的框架训练各智能体,各智能体分布式决策卸载方案,以最小化系统的平均响应时间。设置评估实验,在多种动态变化的场景下对提出的算法的性能进行对比分析。实验结果显示,提出的算法求解出的系统平均响应时间短于基于规则的算法和多智能体深度强化学习算法,接近于理想方案,且求解时间远短于理想方案。实验结果表明,所提算法能够在可接受的算法执行时间内求解出接近于理想方案的系统平均响应时间。 相似文献
12.
13.
边缘计算技术的发展为计算密集型业务提供了一种全新的选择,低能耗、低时延、实时处理等词语不断被提及,任务卸载引起了众多学者的注意.任务在本地执行还是卸载到服务器上执行,以及卸载到哪一台服务器上执行成为必须要解决的问题.在多智能体环境中提出一种新的目标函数,并构建数学模型;建立马尔可夫决策过程,定义动作、状态空间以及奖励函... 相似文献
14.
最佳卸载策略直接影响移动计算任务卸载的时延与能耗,因此提出基于强化学习方法的移动边缘计算任务卸载方法。首先对移动设备的计算任务卸载形式展开具体分析,并基于分析结果获取计算任务卸载能量消耗、发射功率、传输速率等相关参数值,以此建立移动边缘计算任务卸载模型。最后基于建立的卸载模型结合Q-Learning算法对计算任务实施强化学习,找出计算任务的最佳卸载策略,从而实现移动边缘计算任务的实时卸载。实验结果表明,使用强化学习方法开展移动边缘计算任务卸载时,卸载能耗低、时延小。 相似文献
15.
多服务移动边缘计算网络环境中的不同服务的缓存要求、受欢迎程度、计算要求以及从用户传输到边缘服务器的数据量是随时间变化的。如何在资源有限的边缘服务器中调整总服务类型的缓存子集,并确定任务卸载目的地和资源分配决策,以获得最佳的系统整体性能是一个具有挑战性的问题。为了解决这一难题,首先将优化问题转换为马尔可夫决策过程,然后提出了一种基于软演员—评论家(soft actor-critic,SAC)的深度强化学习算法来同时确定服务缓存和任务卸载的离散决策以及上下带宽和计算资源的连续分配决策。算法采用了将多个连续动作输出转换为离散的动作选择的有效技巧,以应对连续—离散混合行动空间所带来的关键设计挑战,提高算法决策的准确性。此外,算法集成了一个高效的奖励函数,增加辅助奖励项来提高资源利用率。广泛的数值结果表明,与其他基线算法相比,提出的算法在有地减少任务的长期平均完成延迟的同时也具有良好的稳定性。 相似文献
16.
17.
进入工业4.0时代,大规模互联分布式智能工业设备产生了海量的具有时延敏感和计算负载差异的异构工业任务,终端侧有限的计算能力难以支持任务的实时高效处理.通过工业无线网络将任务卸载到网络边缘侧服务器进行多接入边缘计算成为解决终端侧算力受限问题的一种有效手段.然而,工业无线网络有限的时频资源难以支持大规模分布式工业设备的高并发任务卸载.本文充分考虑异构工业任务高并发计算卸载中有限时频资源约束和建模难的问题,提出一种基于深度强化学习的动态优先级并发接入算法(Deep Reinforcement Learning-based Concurrent Access Algorithm with Dynamic Priority,CADP DRL).该算法首先分析异构工业任务的时延敏感性和计算负载时变性,为工业设备分配不同的优先级,动态地改变工业设备接入信道进行计算卸载的概率.然后,利用Markov决策过程形式化动态优先级高并发计算卸载问题,并采用深度强化学习方法建立高维状态空间下状态到动作的映射关系.针对动态优先级和并发卸载的多目标决策问题,设计了包含优先级奖励和卸载奖励的复合奖励函数.为保证训练数据的独立同分布,同时提高算法收敛速度,提出了带经验权重的经验回放方法.对比实验结果表明,CADP DRL能够快速收敛,实时响应,在实现最小卸载冲突的情况下为高优先级工业设备提供最高的成功卸载概率保证,性能优于slotted-Aloha、DQN、DDQN和D3QN算法. 相似文献
18.
边缘计算将计算、存储和带宽等资源分布到了靠近用户的一侧.通过将边缘计算引入车联网,服务提供商能为车载用户提供低延时的服务,从而提高用户出行的服务体验.然而,由于边缘服务器所配备的资源一般是有限的,不能同时支持所有车联网用户的服务需求,因此,如何在边缘服务器资源限制的约束下,确定服务卸载地点,为用户提供低时延的服务,仍然是一个巨大的挑战.针对上述问题,本文提出了一种"端-边-云"协同的5G车联网边缘计算系统模型,并针对该系统模型设计了深度学习和深度强化学习协同的分布式服务卸载方法D-SOAC.首先,通过深度时空残差网络,D-SOAC在中心云预测出潜在的用户服务需求量,协同各边缘服务器获取本地车联网边缘计算环境的系统状态,输入边缘服务器上的本地行动者网络,得到该状态下的服务卸载策略.然后,本地评论家网络基于时序差分误差评价该服务卸载策略的优劣,并指导本地行动者网络进行网络参数的优化.优化一定步数后,边缘服务器将优化过的本地网络参数上传到位于中心云的全局网络,协同中心云进行网络参数的更新.最后,中心云将最新的参数推送回本地网络,从而不断对行动者评论家网络进行调优,获得服务卸载的最优解.基于来自现实世界的车载用户服务需求数据集的实验结果表明,在各种车联网边缘计算环境中,相比于四种现有的服务卸载算法,D-SOAC能够降低0.4%~20.4%的用户平均服务时延. 相似文献
19.
无人机(UAV)灵活机动、易于部署,可以辅助移动边缘计算(MEC)帮助无线系统提高覆盖范围和通信质量,但UAV辅助MEC系统研究中存在计算延迟需求和资源管理等挑战。针对UAV为地面多个终端设备提供辅助计算服务的时延问题,提出一种基于双延迟深度确定性策略梯度(TD3)的时延最小化任务卸载算法(TD3-TOADM)。首先,将优化问题建模为在能量约束下的最小化最大计算时延的问题;其次,通过TD3-TOADM联合优化终端设备调度、UAV轨迹和任务卸载比来最小化最大计算时延。仿真实验分析结果表明,与分别基于演员-评论家(AC)、深度Q网络(DQN)以及深度确定性策略梯度(DDPG)的任务卸载算法相比,TD3-TOADM得到的计算时延减小了8.2%以上。可见TD3-TOADM能获得低时延的最优卸载策略,具有较好的收敛性和鲁棒性。 相似文献
20.
移动边缘计算(MEC)可以在网络边缘为用户提供就近的存储和计算服务,从而为移动用户带来低能耗、低时延的优势。该文针对基于超密集网络(UDN)的多用户多MEC场景,从用户侧出发,以最小化用户计算总开销为目的,解决用户在卸载过程中的卸载决策和上传传输功率优化以及MEC计算资源分配问题。具体而言,考虑到该问题是一个具有NP-hard性质的MINLP问题,该文将该问题分解为两个子问题并通过两个阶段的方式进行求解。首先在第一个阶段设计了一种基于深度强化学习(DQN)的任务卸载决策来解决任务卸载子问题,然后在第二个阶段分别使用KKT条件以及黄金分割算法解决MEC计算资源分配和上行传输功率的优化问题。仿真结果表明,所提方案在保证用户时延约束的前提下,有效降低了用户的计算开销,提升了系统性能。 相似文献