共查询到20条相似文献,搜索用时 0 毫秒
1.
近紫外白光LED用红色荧光粉In2(MoO4)3:Eu3+,Bi3+的合成及发光性能 总被引:2,自引:0,他引:2
通过固相反应法在1000℃空气气氛中合成了In2(MoO4)3:Eu3+、Bi 3+红色荧光粉。粉体分别用X射线衍射(XRD)、荧光分度计测试。结果表明制备的荧光粉具有单相立方晶体结构,该荧光粉能够被近紫外光(395nm)有效激发,发射高强度的612nm红光。Eu3+浓度为40%(摩尔分数)时,In2(MoO4)3:Eu3+发光强度较高。In2(MoO4)3:0.4Eu3+、Bi 3+荧光粉,Bi 3+浓度为3%(摩尔分数)时,发光强度最大,高于没有掺Bi 3+的In2(MoO4)3:0.4Eu3+荧光粉。和CaMoO4:Eu3+相比,In2(MoO4)3:0.4Eu3+、0.03Bi 3+有较高的发光强度。因此,In2(MoO4)3:0.4Eu3+、0.03Bi 3+是一种可能应用于近紫外白光LED的新型红色荧光粉。 相似文献
2.
目前在LED应用领域,高色温、低显指等问题对白光LED(WLED)的实际应用存在限制,制备一种能够有效发出红光的发光材料,对促进WLED的发展具有重大意义。本文采用高温固相法制备了一系列Na5Y1-x(MoO4)4∶xEu3+(x=0.1~0.9)荧光粉,利用X射线粉末衍射仪对样品的物相结构进行研究,XRD测试结果表明,Na5Y(MoO4)4∶Eu3+样品的衍射图与纯相Na5Y(MoO4)4完全一致,说明Eu3+掺杂对Na5Y(MoO4)4的晶体结构未产生显著改变。使用荧光粉激发光谱与热猝灭分析系统对样品的发光性能进行了表征,结果显示,Na5Y1-x(MoO4)4<... 相似文献
3.
Eu2+在KNaCa2(PO4)2中的发光及晶体学格位 总被引:2,自引:0,他引:2
采用高温固相法制备了KNaCa2(PO4)2:Eu2+蓝色荧光粉,并研究了材料的发光特性.在400 nm近紫外光激发下,材料呈非对称的单峰发射,主峰位于470 nm.监测470 nm发射峰,对应的激发光谱覆盖200~450 nm,主峰位于400 nm,说明材料能够很好的吸收紫外?近紫外光,发射蓝色光.利用van Uitert公式计算了Eu2+取代KNaCa2(PO4)2中Ca2+时所占晶体学格位,得出461和502 nm发射分别归属于八配位和六配位的Eu2+发射.研究了Eu2+掺杂浓度对KNaCa2(PO4)2:Eu2+材料发射强度的影响,结果显示Eu2+的最佳掺杂浓度为1mol%,利用Dexter理论得出其浓度猝灭机理为电偶极?电偶极相互作用. 相似文献
4.
采用高温固相法制备了Na_3Gd_2(BO_3)_3∶Tb~(3+),Eu~(3+)荧光粉,并对样品的物相组成、微观形貌、发光性能和能量传递进行了分析。结果表明,Na_3Gd_(2-x)(BO_3)_3∶xTb~(3+)荧光粉在紫外和近紫外区域有较强的激发峰,在368nm波长激发下,发射光呈绿色,Tb~(3+)最佳掺杂量为x=0.04。随着在Na_3Gd_(1.96)(BO_3)_3∶0.04Tb~(3+)中掺入Eu~(3+),Tb~(3+)对Eu~(3+)产生了以电偶极-电偶极相互作用为主的能量传递,且传递效率随Eu~(3+)掺杂量的增加而逐渐增大。发射光谱中Tb~(3+)的发射峰强度逐渐减弱,而Eu~(3+)的发射峰强度逐渐增强,导致Na_3Gd_(1.96-y)(BO_3)_3∶0.04Tb~(3+),yEu~(3+)荧光粉发光颜色由绿色向橙色变化。 相似文献
5.
6.
7.
以Eu2O3、Sr(NO3)2和(NH4)6Mo7O24.4H2O为原料,采用水热法合成了Eu3+离子掺杂的Sr0.6MoO4∶Eu0.43+红色荧光粉。用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)和荧光光谱(PL)等分析手段研究了荧光粉的结构和光致发光性能。结果表明,制备的荧光粉颗粒分散均匀,形状呈类四方双锥状,粒径在0.5~2μm之间,荧光粉可以被近紫外光(396nm)和蓝光(466nm)有效激发,发射出峰值位于614nm的红光,激发波长与紫外和蓝光LED芯片相匹配。因此,这种荧光粉是一种可能应用在白光LED上的红色荧光粉材料。 相似文献
8.
9.
以NaOH,Y(NO3)3.6H2O和Eu(NO3)3.6H2O为前驱体,通过添加络合剂PEG-2000,采用水热法,成功地合成了Y2O3∶Eu3+纳米棒和纳米管,并采用先进的测试手段对其结构和性能进行了表征与测试。探讨了Y2O3∶Eu3+纳米棒和纳米管的生长机制,同时研究了Y2O3:Eu3+纳米晶的光致发光性能。研究结果表明,水热温度、反应时间、NaOH的添加量和PEG-2000对产物形貌有着非常重要的影响,所制备的材料具有Eu3+的特征红光发射,并在Eu3+的掺杂量为5%(摩尔分数)时样品发光最好。 相似文献
10.
采用高温固相法制备了Sr2SiO4.SrCl2∶Eu2+荧光粉,并研究了材料的发光特性。X射线衍射结果显示,Sr2SiO4.SrCl2∶Eu2+材料是由SrCl2∶Eu2+和Sr2SiO4∶Eu2+构成的复合化合物。以320nm紫外光作为激发源,测得材料的发射光谱呈宽谱特征,覆盖350~600nm。在0.5%~2%范围增大Eu2+掺杂量时,位于蓝色光区域的发射峰位置没有变化,为403nm,处于长波方向的发射峰呈现出先红移、后蓝移的变化趋势,但两发射峰的强度均明显减小。监测两发射峰,所得结果分别对应SrCl2∶Eu2+和Sr2SiO4∶Eu2+材料的激发光谱,覆盖250~400nm。分析认为,材料的光谱分布及发射强度的变化与晶场环境及处于不同Sr2+格位上Eu2+间的能量传递等有关。 相似文献
11.
12.
Mn2+作为激活剂加入一些基质中,发光比较弱。因此常常选择使用合适的敏化剂来提高Mn2+的发光效率,本文的研究目就是验证Eu2+是Mn2+的良好的敏化剂。采用高温固相法合成了Eu2+,Mn2+掺杂激活的CaZn2(PO4)2荧光粉,并对其发光性质进行了研究。单掺杂Eu2+时呈现发射峰位于504nm的带谱,属于Eu2+离子的5d-4f能级跃迁辐射,激发峰位于380nm,属于Eu2+的f-d跃迁特征激发谱带。单掺Mn2+时CaZn2(PO4)2不发光。当Eu2+和Mn2+共掺时,出现Mn2+的673nm发射峰,样品发红光,表明Eu2+对Mn2+的发光有很强的敏化作用。研究了Eu2+和Mn2+掺杂浓度对激发光谱和发射光谱的影响,证明在CaZn2(PO4)2:Eu2+,Mn2+中Eu2+对Mn2+的能量传递属于共振能量传递。 相似文献
13.
14.
研究了不同退火机制下GdAlO3∶Eu3+荧光粉的光谱特性。采用高温固相反应法在空气气氛和还原气氛中分别合成了GdAlO3∶Eu3+荧光粉,讨论了在烧结过程中产生的色心的光谱性质及其对GdAlO3∶Eu3+发光强度、激发光谱和O2--Eu3+电荷迁移带位置的影响。研究了后退火对GdAlO3∶Eu3+光谱特性的影响,进一步解释了VUV激发下的能量传递机制。根据烧结气氛、烧结温度和后退火对色心以及GdAlO3∶Eu3+光谱特性的影响,找到了一条能有效消除色心获得高荧光强度的两步反应合成路线。 相似文献
15.
采用微波法合成了四方晶系的CaWO4∶Eu~(3+)红色荧光粉。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、光致发光光谱(PL)等分析手段对样品的结构、形貌以及发光性能进行了表征。研究了结构控制剂种类、PEG添加量、Eu~(3+)掺杂浓度、设置温度、反应物浓度等对合成CaWO4∶Eu~(3+)发光材料的发光性能以及形貌的影响。实验结果表明,所合成四方晶系的CaWO4∶Eu~(3+)红色荧光粉在393nm紫外激发下的发射主峰位置在614nm处。当反应条件分别为PEG添加量为1.00g、Eu~(3+)掺杂浓度20%、设置温度为120℃、反应物浓度为0.06mol/L时样品具有最强的发光强度。在紫外灯照射下,样品呈现出明亮的红色。 相似文献
16.
KBaPO4:Tb3+材料制备及其发光特性 总被引:2,自引:0,他引:2
采用高温固相法合成了KBaPO4:Tb3+绿色发光荧光粉,并研究了材料的发光性质.KBaPO4:Tb3+材料呈多峰发射,发射峰位于437、490、545、586和622 nm,分别对应Tb3+的5D3→7F4和5D4→7FJ=6,5,4,3跃迁发射,主峰为545 nm;监测545 nm发射峰,所得激发光谱由4f 7-5d1的宽带吸收(200~330 nm)和4f-4f电子吸收(330~400 nm)组成,主峰为380 nm.研究了Tb3+掺杂浓度,电荷补偿剂Li+、Na+、K+和Cl-,及敏化剂Ce3+对KBaPO4:Tb3+材料发射强度的影响.结果显示,调节激活剂浓度、添加电荷补偿剂或敏化剂均可在很大程度上提高材料的发射强度.上述结果表明KBaPO4:Tb3+材料是一种很好的近紫外光激发型高效绿色发光荧光粉. 相似文献
17.
采用燃烧法按钙镁比x/y分别为10/0、9/1、8/2、7/3、6/4、5/5合成了CaxMgy(VO4)n:Eu3+荧光粉.利用XRD测试了样品的相组成,结果表明,当x/y>8/2时样品以Ca3(VO4)2为主晶相,当x/y=8/2时样品中开始出现Ca5Mg4(VO4)6相.利用荧光分光光度计测试了样品的荧光光谱,结果表明,当x/y>8/2时样品表现为615nm的锐线发射,当x/y<8/2时样品表现为615nm的锐线发射和400~600nm之间的宽带发射,发光颜色随x/y从10/0到5/5由红色向黄绿色变化. 相似文献
18.
采用水热法成功制备了Er~(3+)/Yb~(3+)双掺杂的NaGd(WO_4)_2纳米粉体,研究了不同络合剂、水热温度对样品形貌和结构的影响。测量了不同Er~(3+)掺杂浓度样品的可见上转换和近红外发射光谱。结果表明:在980nm LD激发下,可观测到样品强烈的绿色上转换发光,对应Er~(3+)的~2H_(11/2)→~4I_(15/2)(530nm)和~4S_(3/2)→~4I_(15/2)(552nm)跃迁,以及较弱的红色上转换和近红外发光,分别对应Er~(3+)的~4F_(9/2)→4I15/2(656nm)和~4I_(13/2)→~4I_(15/2)(1 532nm)跃迁。且随着Er~(3+)掺杂浓度的增加,样品的上转换红绿光和1.54μm附近的近红外光均呈现出先增大后减小的趋势。样品的激发和发射光谱显示,在378nm处的激发峰最强,对应Er~(3+)的~4I_(15/2)→~4 G_(11/2)能级跃迁,最强发射峰位于552nm。根据泵浦功率与发光强度的关系可以得出,红光和绿光的发射主要为双光子吸收过程,但红光还包含了一定的单光子吸收成分。 相似文献
19.
采用高温固相法合成CaMoO4∶Eu3+红色荧光粉,采用热解法制备g-C3N4蓝色荧光粉,并制备复合荧光粉g-C3N4/CaMoO4∶Eu3+。利用X射线衍射、荧光光谱分析、热猝灭分析对荧光粉进行了表征。结果表明,CaMoO4∶Eu3+红色荧光和复合荧光粉g-C3N4/CaMoO4∶Eu3的衍射峰与CaMoO4粉末标准卡PDF#85-1267的衍射峰相匹配。在393nm的激发下,g-C3N4在462nm处发蓝绿色光,CaMoO4∶Eu3+在616nm处发红色光。通过改变g-C3N4与CaMoO4∶Eu... 相似文献
20.
采用高温固相法制备了KNaCa2(PO4)2∶Dy3+发光材料并对其发光特性进行了研究。光谱显示,KNaCa2(PO4)2∶Dy3+激发谱为300~500nm范围内的一系列锐谱,可被InGaN管芯和蓝光有效激发。尤其在385nm紫外光激发下,样品呈现较强白光发射,主发射峰位于485和577nm,对应Dy3+的4F9/2-6 H15/2、4F9/2-6 H13/2跃迁,形成"黄+蓝"单一基质白光。研究了Dy3+掺杂浓度对KNaCa2(PO4)2∶Dy3+发光性能的影响,随Dy3+浓度增加,发光强度先增大后减小,最佳掺杂浓度为0.04mol,Y/B值在较小范围内先增大后减小。根据Dexter理论分析其浓度猝灭机理为电偶极-电偶极相互作用。测量并标定了Dy3+不同浓度下样品的色坐标均呈现白光发射。研究表明,KNaCa2(PO4)2∶Dy3+材料是一种适合紫外-近紫外-蓝光激发的单一基质白光荧光粉。 相似文献