共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高行人重识别(Re-ID)的准确率和适用性,提出了一种基于向量注意力机制GoogLeNet的Re-ID方法。首先,将3组图像(锚、正、负)输入到GoogLeNet-GMP网络中,获得分段式特征向量。然后,利用空间金字塔池化(Spatial Pyramid Pooling, SPP)对来自不同金字塔等级的特征进行聚合,并引入注意力机制,通过对代表目标视觉信息的多尺度池化区域进行整合,获得多个语义等级上的可区分性特征。同时,将两个不同损失函数的混合形式作为最终损失函数。在Market-15012和Duke-MTMC3数据集上进行实验,结果表明,相比其他优秀方法,所提方法在Rank-1和mAP指标方面表现更优。 相似文献
2.
针对行人重识别中行人文本属性信息未被充分利用以及文本属性之间语义联系未被挖掘的问题,提出一种基于多模态的图卷积神经网络(GCN)行人重识别方法。首先使用深度卷积神经网络(DCNN)学习行人文本属性与行人图像特征;然后借助GCN有效的关系挖掘能力,将文本属性特征与图像特征作为GCN的输入,通过图卷积运算来传递文本属性节点间的语义信息,从而学习文本属性间隐含的语义联系信息,并将该语义信息融入图像特征中;最后GCN输出鲁棒的行人特征。该多模态的行人重识别方法在Market-1501数据集上获得了87.6%的平均精度均值(mAP)和95.1%的Rank-1准确度;在DukeMTMC-reID数据集上获得了77.3%的mAP和88.4%的Rank-1准确度,验证了所提方法的有效性。 相似文献
3.
针对监控视频中行人外观、姿态相似等现象导致的视频行人重识别准确率低的问题进行了研究,提出了一种基于图模型的视频行人重识别方法,有效利用了视频中的时序信息,实现跨帧及帧内区域的信息交互。具体来说,利用跨帧分块区域间的关联信息建立区域节点间的固有关系,并进行特征传播迭代更新区域信息。另一方面,在度量学习过程中,提出了一种加权损失函数策略,这个方法将先前挖掘策略中的二进制分配法(即丢弃或保留该样本)优化为连续分数分配法,解决了可用样本未被有效利用的问题。将模型在MARS和DukeMTMC-VideoReID两个数据集上进行了评估,实验结果证实了提出方法的有效性。 相似文献
4.
行人间交互作用的复杂性给行人轨迹预测带来了挑战,且现有算法难以捕获行人间有意义的交互信息,不能直观地建模行人间的交互作用。针对以上问题,提出多头软注意力图卷积网络。首先利用多头软注意力(MS ATT)结合内卷网络Involution分别从空间图和时间图输入中提取稀疏空间和稀疏时间邻接矩阵,生成稀疏空间和稀疏时间有向图;然后,利用图卷积网络(GCN)从稀疏空间和稀疏时间有向图中学习交互作用与运动趋势特征;最后,将学习到的轨迹特征输入时间卷积网络(TCN)以预测双高斯分布参数,生成行人预测轨迹。在ETH和UCY数据集上的实验结果表明:相较于空时社交关系池化行人轨迹预测模型(SOPM),所提算法的平均位移误差(ADE)降低了2.78%;相较于稀疏图卷积网络(SGCN),所提算法的最终位移误差(FDE)降低了16.92%。 相似文献
5.
比特币作为匿名的加密数字资产逐渐成为部分非法地下交易的选择.为了净化金融市场、打击非法交易,需要对比特币网络中的非法交易活动进行识别.在相关工作的基础上,文章提出一种基于多层感知器与图卷积网络结合的检测比特币网络中非法交易的方法(Multi-layer Perceptrons+Graph Convolutional N... 相似文献
6.
基于特定目标的情感分析旨在预测句子中不同方面表达的不同情感倾向。针对之前利用循环神经网络(RNN)结合注意力机制的网络模型所带来的训练参数多且缺少对相关句法约束和长距离词依赖机制解释的问题,提出自注意力门控图卷积网络MSAGCN。首先,模型采用多头自注意力机制编码上下文词和目标,捕获句子内部的语义关联;然后,采用在句子的依存树上建立图卷积网络的方法获取句法信息以及词的依存关系;最后,通过带有目标嵌入的门控单元(GTRU)获取特定目标的情感。与基线模型相比,所提模型的准确率和调和平均值F1分别提高了1%~3.3%和1.4%~6.3%;同时,预训练的BERT模型也被应用到当前任务中,使模型效果获得了新的提升。实验结果表明所提出的模型能更好掌握用户评论的情感倾向。 相似文献
7.
针对换衣行人重识别(ReID)任务中有效信息提取困难的问题,提出一种基于语义引导自注意力网络的换衣ReID模型。首先,利用语义信息将图像分割出无服装图像,和原始图像一起输入双分支多头自注意力网络进行计算,分别得到衣物无关特征和完整行人特征。其次,利用全局特征重建模块(GFR),重建两种全局特征,得到的新特征中服装区域包含换衣任务中鲁棒性更好的头部特征,使得全局特征中的显著性信息更突出;利用局部特征重组重建模块(LFRR),在完整图像特征和无服装图像特征中提取头部和鞋部局部特征,强调头部和鞋部特征的细节信息,并减少换鞋造成的干扰。最后,除了使用行人重识别中常用的身份损失和三元组损失,提出特征拉近损失(FPL),拉近局部与全局特征、完整图像特征与无服装图像特征之间的距离。在PRCC(Person ReID under moderate Clothing Change)和VC-Clothes(Virtually Changing-Clothes)数据集上,与基于衣物对抗损失(CAL)模型相比,所提模型的平均精确率均值(mAP)分别提升了4.6和0.9个百分点;在Celeb-reID和Cele... 相似文献
8.
刘传 《计算机与数字工程》2023,(4):860-865
经典的视觉注意力模型缺乏视觉对象间空间关系的推理能力,忽略了图像和问题文本之间的密集语义交互,导致在预测答案过程中对噪声的处理能力不足。针对上述问题,提出了一种基于门控图卷积网络和协同注意力的视觉问答模型。该模型基于图像中视觉对象之间的相对空间位置构建空间关系图;同时以问题为引导,在图卷积网络的基础上增加门控机制,能够动态控制具有不同空间关系的邻居对节点的贡献程度;然后将问题的词特征和带有空间关系感知能力的视觉特征输入双向引导的协同注意力模块,共同学习它们之间的密集语义交互。在VQA2.0数据集进行实验,结果表明:该模型具有较强的显式关系推理能力,在test-std测试集的总体准确率为70.90%,优于该数据集上的经典模型,有效地提升了视觉问答的准确率。 相似文献
9.
10.
图卷积网络在基于骨架的行为识别的任务中取得了良好的性能。然而并非所有的关节点都与动作的发生密切相关,这些无关的关节点阻碍了识别的精度。为此,图池化被应用到基于骨架的行为识别方法中。具体来说,首先通过一个图卷积层提取特征,随后自注意力图池化被用于去除特征较小的结点,然后继续使用图卷积网络进行特征提取并得到分类结果。通过这种方式,网络更加关注于动作发生相关的结点,而忽略那些无关结点信息所带来的影响,识别精度相应的得到提高。在两个大规模的公开数据集NTU RGB+D和Kinetics skeleton的实验证明了该方法的有效性。 相似文献
11.
基于图卷积神经网络的行人重识别方法面临两个问题:1)在对特征映射构图时,图节点表达的语义信息不够显著;2)选择特征块构图时仅依赖特征块间的相对距离,忽略内容相似性.为了解决这两个问题,文中提出融合关系学习网络的行人重识别.利用注意力机制,使用最大注意力模型,使最重要的特征块更显著,赋予其语义信息.融合相似性度量,从距离和内容两方面对特征块进行相似性计算,度量方式更全面.该算法能够综合地选取近邻特征块,为图卷积神经网络提供更好的输入图结构,使图卷积神经网络提取更鲁棒的结构关系特征.在iLIDS-VID、MARS数据集上的实验验证文中网络的有效性. 相似文献
12.
针对现有电力负荷预测模型建模工作量大、时空联合表征不足、预测精度低等问题,提出了一种结合长短期记忆(LSTM)网络和自注意力机制的图卷积网络(GCN)的短期电力负荷预测模型GCNLS-STLF。首先,利用LSTM和自注意力机制将原始多维时间序列数据转化为包含序列间关联关系的电力负荷图;然后,通过GCN、LSTM和图傅里叶变换(GFT)对电力负荷图进行特征提取;最后,使用全连接层对特征进行重构,并利用残差进行多次预测,以增强原始电力负荷数据的表达能力。在摩洛哥与巴拿马某电站的真实历史电力负荷数据上进行的短期电力负荷预测实验结果显示,与支持向量机(SVM)、LSTM、混合模型CNN-LSTM和基于注意力的CNN-LSTM(CNN-LSTM-attention)等预测模型相比,GCNLS-STLF在摩洛哥全部电力负荷测试集上的平均绝对百分比误差(MAPE)分别降低1.94、0.90、0.49和0.37个百分点;在巴拿马电力负荷测试集上的3月份MAPE分别降低1.39、0.94、0.38和0.29个百分点,6月份MAPE分别降低1.40、0.99、0.35和0.28个百分点。实验结果表明,GC... 相似文献
13.
复句的关系识别是为了区分句子语义关系的类别,是自然语言处理(NLP)中必不可少的基础研究任务。现有研究无法使机器在表层判别缺少显式句间连接词句子的语义关系类型。该文将Attention机制与图卷积神经网络(GCN)相结合应用到汉语复句语义关系识别中,通过BERT预训练模型获取单句词向量,输入到Bi-LSTM获取句子位置表示,经Attention机制得到各位置间权重构建图网络以捕获句子间的语义信息,通过图卷积抽取深层的关联信息。该文的方法对缺少显式句间连接词句子的关系识别达到了较好的识别效果,为进一步研究计算机自动分析、识别处理复句的基本方法奠定基础。实验结果表明,在汉语复句语料库(CCCS)和汉语篇章树库(CDTB)数据集上,与先前最好的模型相比,其准确率分别为77.3%和75.7%,提升约1.6%,宏平均F1值分别为76.2%和74.4%,提升约2.1%,说明了该文方法的有效性。 相似文献
14.
15.
行人重识别是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。受行人姿态、遮挡、光照变化等因素的影响,传统的行人重识别方法中特征的表达能力有限,导致准确率降低,提出一种融合不同尺度对比池化特征的行人重识别方法。利用残差网络ResNet50提取行人图像的多尺度特征,在网络的不同层次上,通过对输入的特征进行全局平均池化和最大平均池化,将每组平均池化特征和最大池化特征相减,对相减得到的差异特征与最大池化特征进行相加,获得具有强判别性的对比池化特征。在此基础上,利用三元组损失和交叉熵损失联合优化模型,提高模型的泛化能力,同时采用重排序技术优化网络性能。实验结果表明,该方法在Market1501和DukeMTMC-reID数据集上的首位命中率分别达到96.41%和91.43%,平均精度均值为94.52%和89.30%,相比SVDNet、GLAD和PCB等方法,其行人重识别的准确率较高。 相似文献
16.
17.
深度神经网络在有着大量标注数据的图像识别任务上已经占据了统治地位,但是在只有少量标注数据的数据集上训练一个好的网络仍然是一个据有挑战性的任务.如何从有限的标注数据中学习已经成为了一个有着很多应用场景的热点问题.目前有很多解决小样本分类任务的方法,但是仍然存在识别准确率低的问题,根本原因是在小样本学习中,神经网络只能接收... 相似文献
18.
图卷积自编码器是一类高效的图表示学习模型,在链路预测等任务中具有出色性能。然而现有模型大多依赖图卷积网络对邻接矩阵和属性矩阵进行编码,未充分利用二阶信息等高阶结构特征。针对上述问题,提出了基于二阶信息的图卷积自编码器模型SeVGAE。首先使用图卷积和二阶图卷积生成变分自编码器的均值和方差,然后学习嵌入向量表示原始图的混合概率分布,最后使用内积解码器恢复拓扑结构。在链接预测任务中,SeGVAE表现优于基线模型,Citeseer数据集上的AUC和AP相较原始的VGAE分别提升了3.26%和2.56%。实验结果表明,二阶信息的引入能够在低维嵌入中保留更丰富的图信息,提升模型性能。模型在处理属性信息不足、拓扑信息不准确的图数据时具有较为明显的优势,在边缘和属性均缺失40%的极端情况下,SeVGAE的AUC和AP相较VGAE提升4.79%和3.47%。 相似文献
19.
现如今,神经网络在基于句序列的机器翻译模型已占据主流地位.但在中英文互译中,仅对单语句进行翻译不仅仅丢失语义信息,还破坏繁杂的逻辑构造,并不符合当代机器翻译需求.鉴于此,提出一种新型基于注意力引导图卷积网络的机器翻译优化模型,可通过多头注意力机制和图卷积神经网络结构的结合保留词元素特征及段落层次结构信息.为了验证基于注意力引导图卷积网络模型是否优于其他传统算法,在WMT21数据集上进行实验,结果表明各指标均达到理想效果. 相似文献
20.
针对基于图卷积的自编码器模型对原始图属性和拓扑信息的保留能力有限、无法学习结构和属性之间深度关联信息等问题,提出基于多通道图卷积自编码器的图表示学习模型。设计拓扑和属性信息保留能力实验,验证了基于图卷积的自编码器模型具备保留节点属性和拓扑结构信息的能力。构建特定信息卷积编码器和一致信息卷积编码器,提取图的属性空间特征、拓扑空间特征以及两者关联特征,生成属性嵌入、拓扑嵌入和一致性嵌入,同时建立与编码器对称的卷积解码器,还原编码器过程。使用重构损失、局部约束和一致性约束,优化各编码器生成的低维嵌入表示。最终将蕴含不同图信息的多种嵌入进行融合,生成各节点的嵌入表示。实验结果表明,该模型在BlogCatalog和Flickr数据集上节点分类的Micro-F1和Macro-F1明显高于基线模型,在Citeseer数据集上节点聚类的精度和归一化互信息相比于表现最优的基线模型提升了11.84%和34.03%。上述实验结果证明了该模型采用的多通道方式能够在低维嵌入中保留更丰富的图信息,提升图机器学习任务的性能表现。 相似文献