首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究强动载荷下船用焊接钢板的力学性能。开展了典型船用焊接钢板母材、焊缝和热影响区的准静态拉伸试验、高温拉伸试验及SHPB动态压缩试验,分析了焊接钢板材料在不同应力状态下的力学行为,基于力学性能试验结果拟合了焊接钢板母材、焊缝和热影响区材料的本构模型。结果表明:准静态条件下,与母材相比,焊缝和热影响区材料的屈服强度与抗拉强度偏大,延伸率偏小;高应变率下,热影响区材料抵抗塑性变形的能力明显强于其他两种材料,且随着应变率的增加抵抗塑性变形的能力呈增强趋势;焊接板母材、焊缝与热影响区材料均表现出应变率效应和温度效应;热影响区是焊接板抗冲击性能相对薄弱的区域。建立的Johnson-Cook模型可以描述强动载荷下焊接钢板的力学性能。  相似文献   

2.
High strength aluminium alloys generally present low weldability because of the poor solidification microstructure, porosity in the fusion zone and loss in mechanical properties when welded by fusion welding processes which otherwise can be welded successfully by comparatively newly developed process called friction stir welding (FSW). This paper presents the effect of post weld heat treatment (T6) on the microstructure and mechanical properties of friction stir welded 7039 aluminium alloy. It was observed that the thermo-mechanically affected zone (TMAZ) showed coarser grains than that of nugget zone but lower than that of heat affected zone (HAZ). The decrease in yield strength of welds is more serious than decrease in ultimate tensile strength. As welded joint has highest joint efficiency (92.1%). Post weld heat treatment lowers yield strength, ultimate tensile strength but improves percentage elongation.  相似文献   

3.
This paper presents a systematic approach to optimising FSW process parameters (tool rotational speed and feed rate) through consideration of frictional power input. Frictional power governs the tensile strength and the fatigue life in this 5083-H321 alloy through its effect on plastic flow processes in the thermo-mechanically affected zone (TMAZ) of the weld. Although, a close relationship therefore exists between tensile strength and fatigue performance, this arises from their joint dependence on the occurrence of certain defect types that are apparently specific to certain strain hardened aluminium alloys that are FS welded. These defects are related to plastic flow processes and have a strong influence on crack paths in FS welded 5083-H321 alloy. Weld residual stresses have been extensively measured using synchrotron X-ray diffraction strain scanning and are governed by heat input into the weld. There is no clear relationship between peak values of residual stresses and fatigue performance. The work indicates that rotational speed is the key parameter governing tool torque, temperature, frictional power and hence tensile strength and fatigue performance.  相似文献   

4.
In the present study, the results of fatigue tests with the magnesium alloy AZ31 (ISO‐MgAl3Zn1) in the material states base metal, heat affected zone and weld metal obtained under strain control at room temperature within a range from 2·102 to 5·106 cycles are presented. The fatigue behaviour was characterized by the Coffin–Manson–Basquin equations and the stress – strain behaviour by the Ramberg–Osgood equation. The data can be used to assess welded magnesium joints according to the local strain concept.  相似文献   

5.
The present work aims at studying the role of butter layer (BL) in low-cycle fatigue (LCF) behavior of modified 9Cr steel and CrMoV steel dissimilar welded joint. The significant difference of the chemical composition of base metals (BMs) makes it a challenge to achieve sound welded joint. Therefore, buttering was considered to obtain a transition layer between the dissimilar steels. The LCF tests of two kinds of specimens without and with butter layer were performed applying strain-controlled cyclic load with different axial strain amplitudes. The test results indicated that the number of cycles at higher strain amplitudes of welded joint without butter layer was greatly higher than that of the joint with butter layer, while the fatigue lifetime to crack initiation (2Nf) became closer to each other at low and middle strain amplitudes. The failure was in the tempered heat affected zone (HAZ) at the CrMoV side for specimens without BL, while the fracture occurred at the tempered HAZ in the BL for specimens with BL. The microstructure details of BM, BL, HAZ and weld metals (WMs) were revealed by optical microscopy (OM). It was found that the tempered martensite was major microstructure for welded joint and much more carbides were observed in tempered HAZ than other parts due to the repeated tempering. Microhardness test indicated a softest zone existing tempered HAZ of BL and also there was a softer zone in tempered HAZ at the CrMoV side due to repeated tempering during welding and post weld heat treatment (PWHT). And scanning electron microscopy (SEM) was applied to observe the fractography. It was indicated that the fatigue crack initiation occurred from the specimen surface and all specimens were ductile–brittle mixed fractures. It is deemed that the softening behavior in BL caused by twice tempering correspondingly decreased the LCF lifetime at higher strain amplitudes. So suitable welding parameters and heat treatment processes became a key measure to ensure LCF property without losing other properties for welded joint with BL.  相似文献   

6.
Investigations on fatigue crack growth retardation due to single tensile and periodic multiple over load in strength undermatched laser beam welded 3.2 mm thick aerospace grade aluminium alloy 2139-T8 sheets are conducted. The effect of overload on the fatigue crack propagation behaviours of the homogenous base metal and welded panels (200 mm wide, centre cracked) was compared using experimental and FE analysis methods. The effective crack tip plasticity has been determined in homogeneous M(T) specimens using Irwin’s method and in both homogeneous and laser welded specimen by calculating crack tip plastic strain using FE analysis for single tensile overload. The crack retardation due to the overload in welded specimens is described by the Wheeler Model. The crack tip plastic zone size in the welded specimen was determined by FE analysis using maximum plastic zone extension at the mid sheet thickness. The results show that the Wheeler Model can be implemented to the highly heterogeneous undermatched weld to describe the crack retardation in fatigue following single tensile overload. Fatigue crack growth retardation due to single overload is found to be larger than the base metal. However, after periodic multiple overload, shorter crack retardation has occurred for undermatched welds than the base metal.  相似文献   

7.
This paper reports the effect of post weld heat treatment on fatigue behaviour of electron beam welded AA2219 aluminium alloy. An attempt has been made to enhance the fatigue strength of the electron beam welded joints through post weld heat treatment methods such as solution treatment, artificial aging, solution treatment and artificial aging. Electron beam welding machine with 100 kV capacity has been used to fabricate the square butt joints. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN has been used to evaluate the fatigue life of the welded joints. Of the three post weld heat treated joints, the solution treated and aged joints are enduring higher number of cycles under the action of cyclic loads.  相似文献   

8.
目的 为了合理制定不同强度等级DP钢同种和异种接头的激光焊接工艺,研究激光焊接工艺对接头组织性能的影响。方法 采用SEM、硬度试验、拉伸试验等手段,研究不同强度等级DP钢同种和异种激光焊接接头的微观组织和力学性能。结果 对于同种DP钢激光焊接,由于接头各个区域经历的热循环不同,因此其马氏体体积分数和形态、含碳量等存在明显差异。在焊缝熔合区,由于冷却速度较高,因此马氏体体积分数较高且为细条状,硬度高于母材硬度。在热影响区,由于马氏体发生了回火分解,因此其硬度值低于母材硬度,且软化的程度和范围大小与DP钢的强度级别相关。软化的热影响区成为接头的薄弱区域,降低了接头的拉伸性能。在异种DP钢激光焊接接头中,焊缝熔合区的硬度也明显高于母材硬度。靠近高强度级别母材侧的热影响区范围更大,软化程度更明显,接头硬度分布不再对称。接头的抗拉强度与低等级DP钢母材的抗拉强度基本一致。结论 激光焊接工艺对不同强度等级DP钢同种和异种接头组织性能的影响存在较大的差异,DP钢强度级别越高,接头或接头对应侧的热影响区软化程度越明显,这在制定焊接工艺以及焊后处理工艺过程中需要予以考虑。  相似文献   

9.
Post heat treatment of the laser beam welded aluminium alloys AlSi1MgMn and AlCu4Mg1 Laser beam welded age hardenable aluminium alloys often exhibit a loss in strength in the fusion and the heat affected zones, compared to the uninfluenced base material. A material‐compatible combination among a base material, a welding filler material, as well as welding parameters and a suitable post heat treatment of the welded joint allows to improve the weld seam properties. The base material AlSi1MgMn (6082) was welded in the aging condition T4 using AlSi12 and AlSi7Mg ‐ filler materials and the welded joint was completely aged at different temperatures and times, in order to adjust an almost constant hardness profile over the base material, heat affected zone and fusion zone. The base material AlCu4Mg1 (2024) was welded in the aging condition T351 using a AlCu6Mn ‐ filler material and the welded joint was naturally aged. The aging behaviour, the residual stress, the static and dynamic properties of welded joints were examined. The properties can be clearly improved by the post heat treatment.  相似文献   

10.
The aim of this study is to evaluate the possibility of using the linear friction welding (LFW) technique to produce sound joints on a 2124Al/25 vol.%SiCp composite. The MMC joints were subjected to microstructural and mechanical characterization, including hardness, tensile and fatigue tests, without any post-weld heat treatment. The microstructural analyses showed substantially defect-free joints, with a uniform particle distribution in the central zone and a relevant plastic flow of the aluminium matrix alloy. The hardness decrease in the welded zone was approximately 10% in respect to the base material. The joint efficiency was higher than 80%, both in respect to the ultimate tensile strength and fatigue strength at 107 cycles. S–N probability curves were calculated using the maximum likelihood method. Generally, the fracture occurred in the Thermo-Mechanically Affected Zone (TMAZ), with a relevant reduction in the elongation to failure.  相似文献   

11.
The importance of material fatigue information in design has been well recognized. There are a few existing fatigue life prediction methods based on materials tensile properties. Some of these fatigue life prediction methods can be successfully applied for non-heat affected materials. However, industrial components, such as pressure vessel and pipelines are commonly constructed by welding parts together. The fatigue lives of welded section and its surrounding material could be greatly affected by the welding process. Therefore, it is beneficial to develop a fatigue life prediction model for the weld and surrounding heat affected zone (HAZ) materials based on their tensile testing data. In this paper, fatigue lives of base material and its weld and HAZ materials for constructing coke drums are studied. Mechanical properties are first obtained from the tensile tests. Then, fully-reversed strain-controlled fatigue tests were performed. It is found that the fatigue life of pure base material is roughly twice of the weld and four time of the HAZ at the same strain amplitude. Four-point correlation (FPC) method by Manson can reasonably predict the life of base material. However, it over-predicts the lives of weld and HAZ. By introducing two reduction factors Rplastic and Relastic for the weld and HAZ material respectively into the FPC method, the over-prediction can be rectified. Therefore, the proposed modified FPC method could be applied in predicting fatigue lives of weld and HAZ materials.  相似文献   

12.
Low cycle fatigue (LCF) and creep fatigue interaction (CFI) behaviour of P92 steel welded joint were investigated experimentally and numerically. Strain‐controlled LCF tests at different strain amplitudes and CFI tests at different peak strain holding time were conducted. Evolutions of cyclic stress response, mean stress, and creep strain during cycling were described, in which the influence of strain amplitude and holding time were investigated. A specific heat treatment process was proposed to get the homogenous simulated material of fine grain region and coarse grain region in the heat affected zone. Material parameters of parent material, fine grain heat affected zone, coarse grain heat affected zone, and weld metal in the unified viscoplasticity model were then determined and validated. To predict the LCF and CFI behaviour of welded joint, 3‐dimensional unified viscoplasticity model with a modified isotropic variable was compiled into ABAQUS UMAT. The comparison between the predicted and experimental result under LCF and CFI loadings showed that the simulation results were reasonable and agreed with the experimental data well.  相似文献   

13.
目的基于应变设计大变形管线环焊接头热影响区的软化问题,解决制约管线安装质量和服役寿命等难题。方法通过显微硬度测试、微观组织分析,研究了X70大变形管接头热影响区的软化原因,并利用数字相关法研究了焊接接头拉伸过程中的断裂机制,还对焊接接头热影响区进行了激光增强探索。结果 X70焊接接头热影响区粗晶区的最大硬度损失达HV0.239;软化区最大应变达到37%以上;经过热影响区激光重熔后,X70钢焊接接头抗拉强度可提高10%以上,断裂位置均位于母材。结论 X70焊接接头热影响区粗晶区存在明显的软化;拉伸过程中在软化区出现了明显的应变集中,是X70焊接接头断裂于近缝区的主要原因;焊接接头热影响区粗晶区粗大的粒状贝氏体和铁素体导致了焊接接头热影响区的软化。  相似文献   

14.
Investigations were continued on the dissimilar laser beam welds of AA6056 and Ti6Al4V, fabricated by inserting Ti‐sheet into the profiled Al‐sheet and melting AA6056 alone. By using microstructure, hardness and strength as the criteria, sites exhibiting non‐uniform microstructure and localized plastic deformation due to strength mismatch were investigated in two orientations: ? crack parallel to the weld and ? crack perpendicular to the weld for fatigue crack propagation and fracture toughness at room temperature. Effect of temper of AA6056 on these properties was studied for two conditions; welding in T4 followed by post weld heat treatment T6, and welding in T6 and naturally aged for a defined period. The orientation “crack parallel to the weld” was investigated in 3 locations on the side of AA6056: the interface and the two changeovers on the Al‐side. Firstly, between the fusion zone and the heat affected zone (3 mm from the interface) and secondly, between (primary) heat affected zone and towards the base material (7 mm from the interface). Although brittle intermetallic TiAl3 had been formed at the interface, uncontrolled separation or debonding at the interface was not observed. Insofar the bond quality of the weld was good. However, the ranking of interface was the lowest since fatigue crack propagation was relatively faster than that in the fusion zone and heat affected zone, and fracture toughness was low. Therefore, unstable fatigue crack propagation is observed when the crack propagates perpendicular to the weld from AA6056 towards Ti6Al4V. The results have shown that the dissimilar joints exhibit improved performance when laser beam welded in the T6 condition.  相似文献   

15.
Abstract

The effect of post-weld heat treatment (PWHT) on the tensile properties of friction stir welded (FSW) joints of 2219-T6 aluminium alloy was investigated. The PWHT was carried out at aging temperature of 165°C for 18 h. The mechanical properties of the joints were evaluated using tensile tests. The experimental results indicate that the PWHT significantly influences the tensile properties of the FSW joints. After the heat treatment, the tensile strength of the joints increases and the elongation at fracture of the joints decreases. The maximum tensile strength of the joints is equivalent to 89% of that of the base material. The fracture location characteristics of the heat treated joints are similar to those of the as welded joints. The defect free joints fracture in the heat affected zone on the retreating side and the joints with a void defect fracture in the weld zone on the advancing side. All of the experimental results can be explained by the hardness profiles and welding defects in the joints.  相似文献   

16.
Abstract— Analytical procedures based on low cycle fatigue theory are used to estimate the fatigue crack initiation life (Ni) for a cruciform welded joint in mild steel under constant amplitude tensile cyclic loading; the fatigue crack initiating at the weld toe. Effects due to welding such as residual stresses, geometrical variability and changes in material properties are handled. It is shown that for high mean stresses the discrepancies observed between the N i estimates provided by commonly used analytical procedures exceed an order of magnitude. For the base metal (BM) the discrepancies become negligible if cyclic relaxation of notch mean stress is taken into consideration. The differences betwen the N i estimates for heat affected zone (HAZ) material (where fatigue cracks at the weld toe usually initiate) and for BM are quantified. The applicability of HAZ material properties, estimated from hardness, to N i prediction is evaluated.  相似文献   

17.
采用两种热输入不同的焊接工艺参数对3 mm壁厚的Inconel 617镍基高温合金进行激光焊接。通过光学显微镜和扫描电子显微镜对焊接接头显微组织进行观察分析,并测试了焊接接头在室温(25℃)及高温(900℃)下的拉伸性能。结果表明:激光焊接热输入对Inconel 617焊接接头显微组织及力学性能影响明显。在高热输入(200 J/mm)条件下,焊缝正面宽度3.88 mm,熔化区中部晶粒尺寸粗大,取向杂乱,树枝晶二次枝晶间距较大(6.71μm),枝晶间碳化物颗粒尺寸较为粗大,枝晶间Mo,Cr等合金元素的凝固偏析较为严重。焊接接头热影响区宽度约0.29 mm,在晶界和晶内形成了γ+碳化物共晶组织,这是由于焊接升温过程中,热影响区内球状碳化物颗粒与周边奥氏体发生组分液化,并在焊后凝固过程中形成共晶。低热输入(90 J/mm)工艺参数获得的焊缝正面宽度为2.28 mm,焊缝呈沿熔合线母材外延生长并沿热流方向定向凝固形成的柱状晶形态。焊缝中部树枝晶二次枝晶间距较小(2.26μm),枝晶间碳化物颗粒尺寸细小,热影响区宽度约0.15 mm。室温(25℃)拉伸测试表明:高热输入下获得的焊接接头由于焊缝中固溶元素偏析造成的局部组织弱化,从焊缝中部破坏,强度与伸长率有所降低,低热输入条件下获得的焊接接头从母材破坏。而高温实验条件下(900℃),母材晶界发生弱化导致所有试样均从母材破坏。  相似文献   

18.
Isothermal furnace heat treatments were carried out to simulate the microstructures of inter-critical, fine grain and coarse grain heat-affected zones of P91 steel weld joint at different soaking temperatures ranging from just above AC1 (837 °C) to well above AC3 (903 °C). Interrupted low cycle fatigue tests were performed on the specimens of P91 steel up to 5 %, 10 %, 30 %, and 50 % of the total fatigue life at the strain amplitude of ±0.6 %, strain rate of 0.003 s−1 and temperatures of 550 °C and 600 °C. Subsequently, tensile tests were conducted on the interrupt tested specimens at the same strain rate and temperatures. Soaking at the inter-critical temperature region reduces / deteriorates the tensile and yield strengths of base metal compared to fine grain and coarse grain regions. The inter-critical heat-affected zone accounted higher damage contribution towards the overall tensile behavior of the actual P91 steel weld joint. Substructural coarsening during strain cycling at elevated temperatures attributes to the rapid reduction in the initial yield strength up to 10 % of fatigue life of P91 steel. A higher amount of plastic strain accumulation during low cycle fatigue deformation resulted in a decrease in fatigue life of the inter-critical heat-affected zone of P91 steel.  相似文献   

19.
The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular–dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path.  相似文献   

20.
The effect of microstructural characteristics on high-cycle fatigue properties and fatigue crack propagation behavior of welded regions of an investment cast Ti-6Al-4V were investigated. High-cycle fatigue and fatigue crack propagation tests were conducted on the welded regions, which were processed by two different welding methods: tungsten inert gas (TIG) and electron beam (EB) welding. Test data were analyzed in relation to microstructure, tensile properties, and fatigue fracture mode. The base metal was composed of an alpha plate colony structure transformed to a basket-weave structure with thin platelets after welding and annealing. High-cycle fatigue results indicated that fatigue strength of the EB weld was lower than that of the base metal or the TIG weld because of the existence of large micropores formed during welding, although it had the highest yield strength. In the case of the fatigue crack propagation, the EB weld composed of thinner platelets had a faster crack propagation rate than the base metal or the TIG weld. The effective microstructural feature determining the fatigue crack propagation rate was found to be the width of platelets because it was well matched with the reversed cyclic plastic zone size calculated in the threshold ΔK regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号