首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚类数的确定在聚类分析中是一个基本却具有挑战性的问题.一方面,最佳聚类数根据不同的评价标准、用户偏好或需求可能不一致,因此将不同聚类数的聚类结果呈现给用户作参考是有意义的.另一方面,增加聚类数虽会使聚类结果更加紧致,却会削弱不同类之间的分离性,所以选择合适的聚类数是一个在最小化聚类数与最大化类内紧致性或类间分离性之间取...  相似文献   

2.
针对传统的模糊聚类算法大都针对单一目标函数的优化,而无法获得更全面、更准确的聚类结果的问题,提出一种基于改进多目标萤火虫优化算法的模糊聚类方法。首先在多目标萤火虫算法中引入一种动态调整的变异机制以获得更加均匀分布的非劣解,其中以动态减小的概率选择个体并采用类似于差分进化算法中变异算子的策略对其进行变异,通过自适应调整收缩因子以提高变异效率。然后当归档集中的最优解集充满时,从中选取一定量的解与当前种群组合进行下一次进化,使得算法具有更高的效率。最后将其运用到模糊聚类问题中,通过同时优化两个模糊聚类指标的目标函数并从最终的归档集中选取一个解确定聚类结果。采用5组数据进行实验的结果表明,相对于单目标聚类方法,所提方法对各种数据集的聚类有效性指标提高了2到8个百分点,具有更高的聚类准确性和更好的综合性能。  相似文献   

3.
侯莹  韩红桂  乔俊飞 《控制与决策》2017,32(11):1985-1990
针对多目标差分进化算法最优解难以获取的问题,提出一种基于参数动态调整的多目标差分进化(AMODE)算法.AMODE算法通过设计变异率和交叉率的自适应调整策略,实现进化过程中变异率和交叉率的动态调整,均衡多目标差分进化算法的局部搜索能力和全局探索能力,获得收敛性、多样性和均匀性较好的最优解.实验结果表明,基于参数动态调整的AMODE算法能够有效改善多目标差分进化算法的逼近能力(IGD)和均匀性(SP),具有较好的优化效果.  相似文献   

4.
宋通  庄毅 《计算机科学》2012,39(8):205-209
针对差分进化算法(Differential Evolution Algorithm,DE)求解多目标优化问题时易陷入局部最优的问题,设计了一种双向搜索机制,它通过对相反进化方向产生的两个子代个体进行评价,来增强DE算法的局部搜索能力;设计了多种群机制,它可令各子群独立进化一定次数再执行全局进化,以完成子群间进化信息的交流,这一方面降低了算法陷入局部最优的风险,另一方面增强了Pareto解集的多样性,使Pareto前沿面的解集分布更为均匀。实验结果表明,相比于NSGA-II等同类算法,所提方法在搜索Pareto最优解时效率更高,并且Pareto最优解集的精度及分布程度比前者更好。  相似文献   

5.
为了解决传统聚类由于缺少有效指导而导致图像分割结果不理想的问题,将半监督方法引入到多目标进化模糊聚类算法中,提出了一种基于半监督的多目标进化模糊聚类。图像分割算法通过构造基于半监督的类内紧致性函数和类间分离度函数,利用监督信息指导聚类过程获得非支配解集。为了从非支配解集中选择一个最优解,利用监督信息构造了基于相似性度量的有效性指标。实验结果表明,提出的方法在分割准确率和视觉效果上明显优于无监督的聚类方法。  相似文献   

6.
马庆 《计算机科学》2016,43(Z11):117-122, 160
在进化多目标优化研究领域,多目标优化是指对含有2个及以上目标的多目标问题的同时优化,其在近些年来受到越来越多的关注。随着MOEA/D的提出,基于聚合的多目标进化算法得到越来越多的研究,对MOEA/D算法的改进已有较多成果,但是很少有成果研究MOEA/D中权重的产生方法。提出一种使用多目标进化算法产生任意多个均匀分布的权重向量的方法,将其应用到MOEA/D,MSOPS和NSGA-III中,对这3个经典的基于聚合的多目标进化算法进行系统的比较研究。通过该类算法在DTLZ测试集、多目标旅行商问题MOTSP上的优化结果来分别研究该类算法在连续性问题、组合优化问题上的优化能力,以及使用矩形测试问题使得多目标进化算法的优化结果在决策空间可视化。实验结果表明,没有一个算法能适用于所有特性的问题。然而,MOEA/D采用不同聚合函数的两个算法MOEA/D_Tchebycheff和MOEA/D_PBI在多数情况下的性能比MSOPS和NSGA-III更好。  相似文献   

7.
在分析k均值聚类和免疫进化聚类不足的基础上,提出一种基于Parzen密度估计的多目标免疫克隆聚类方法.该算法针对多目标免疫克隆算法中克隆规模难以确定的问题,根据密度聚类的思想,引入核密度估计,根据密度和进化代数确定各抗体的克隆规模,使用混沌变异增加抗体多样性.最后通过TOPSIS(technique for orderpreference by similarity to an ideal solution)方法进行抗体选择.人工以及UCI(universal chess interface)数据集上的仿真实验表明,该方法可以有效地提高算法速度,得到较好的聚类结果.  相似文献   

8.
三维微阵列数据的多目标进化聚类   总被引:1,自引:0,他引:1       下载免费PDF全文
聚类技术广泛应用于微阵列数据分析中。在基因-样本-时间GST微阵列数据矩阵中,挖掘三雏聚类成为当前的热门研究课题。3D聚类过程经常需要对多个相互冲突的目标进行优化,而且进化算法以其强大的探寻能力成为高维搜索空间中非常有效的搜索方法。本文基于多目标进化计算方法提出一个新的3D聚类算法MOE-TC,以挖掘GST数据中的3D聚类。现实微阵列数据上的实验验证结果充分说明了本文算法的有效性。  相似文献   

9.
个体的适应度赋值和群体的多样性维护是进化算法的两个关键问题。首先,一方面,定义了Paretoε-支配关系的相关概念,通过Paretoε-支配关系确定个体的强度Pareto值,根据个体的强度Pareto值对群体进行Pareto分级排序,实现优胜劣汰;另一方面,使用拥挤距离估算个体的拥挤密度,淘汰位于拥挤区的一些个体,维持群体的多样性。然后,根据差分进化算法的特点,使用适当的进化策略和控制参数,给出了一种用于求解多目标优化问题的差分进化算法DEAMO。最后,数值实验表明,DEAMO在求解标准的多目标优化问题时性能表现优良。  相似文献   

10.
权重求和是基于分解的超多目标进化算法中常用的方法, 相比其他方法具有计算简单、搜索效率高等优点, 但难以有效处理帕累托前沿面(Pareto optimal front, PF)为非凸型的问题. 为充分发挥权重求和方法的优势, 同时又能处理好PF为非凸型的问题, 本文提出了一种基于目标空间转换权重求和的超多目标进化算法, 简称NSGAIII-OSTWS. 该算法的核心是将各种问题的PF转换为凸型曲面, 再利用权重求和方法进行优化. 具体地, 首先利用预估PF的形状计算个体到预估PF的距离; 然后, 根据该距离值将个体映射到目标空间中预估凸型曲面与理想点之间的对应位置; 最后, 采用权重求和函数计算出映射后个体的适应值, 据此实现对问题的进化优化. 为验证NSGAIII-OSTWS的有效性, 将NSGAIII-OSTWS与7个NSGAIII的变体, 以及9个具有代表性的先进超多目标进化算法在WFG、DTLZ和LSMOP基准问题上进行对比, 实验结果表明NSGAIII-OSTWS具备明显的竞争性能.  相似文献   

11.
在多目标进化算法的研究中,解群体的多样性和运行效率是最重要的两个指标。在进化算法中一般采用构造非支配集的方法来保持算法的运行效率和解集的分布性;采用聚类技术来计算和维持解群体的分布性和多样性。文章提出了用庄家法构造非支配集和基于个体距离的聚类方法的多目标进化算法。经试验证明,该算法能够趋近到Pareto最优解,并且能保证较好的分布度。  相似文献   

12.
进化算法求解多目标优化问题平衡收敛性和多样性面临的主要挑战在两个方面:增强对帕累托最优前沿的选择压力和获得多样性良好的解集。然而,随着目标维数的增加,基于帕累托支配关系的选择标准无法有效地解决以上问题。因此,设计了一种基于小生境的多目标进化算法。基于小生境,提出了一种新的支配关系,其中,设计了一个聚合函数和一种采用目标向量角的密度估计方法分别度量候选解的收敛度和分布性。为了保证解集的收敛性,在同一个小生境内,仅仅收敛度最好的解是非支配解。为了维护解集的多样性,在任何两个不同的小生境内,一个小生境内兼具收敛度和分布性良好的解支配另一个小生境内收敛性和分布性均差的解,将提出的支配关系嵌入VaEA取代帕累托支配关系,设计了一种多目标进化算法VaEA-SDN。VaEA-SDN与NSGA-Ⅲ、VaEA、MSEA、NSGAII-CSDR、RPS-NSGAII以及CDR-MOEA等先进的算法在DTLZ(Deb-Thiele-Laumanns-Zitzler)和MaF(manyobjective function)基准测试系列问题上进行了广泛的对比仿真实验。仿真结果表明,VaEA-SDN平衡收敛收敛性...  相似文献   

13.
一种改进的基于差分进化的多目标进化算法   总被引:2,自引:2,他引:0       下载免费PDF全文
近年来运用进化算法(EAs)解决多目标优化问题(Multi-objective Optimization Problems MOPs)引起了各国学者们的关注。作为一种基于种群的优化方法,EAs提供了一种在一次运行后得到一组优化的解的方法。差分进化(DE)算法是EA的一个分支,最开始是用来解决连续函数空间的问题。提出了一种改进的基于差分进化的多目标进化算法(CDE),并且将它与另外两个经典的多目标进化算法(MOEAs)NSGA-II和SPEA2进行了对比实验。  相似文献   

14.
使用进化算法解决昂贵高维多目标优化问题时,因目标维数较高,导致收敛性和多样性平衡困难,并且消耗成本过高,使得计算资源有限时难以收敛.为此,提出一种基于分解和聚类的昂贵高维多目标进化算法(DC-EMEA),使用克里金模型近似目标函数,减少昂贵函数的评价次数.在优化器对模型的最优解集搜索时,借助参考向量分解目标空间,有利于收敛性和多样性的平衡,同时采取两轮选择的方式,保证后代种群规模与父代相同,为填充准则选择真实评价的个体时,提供更多选择,提升搜索效率.同时,提出一种自适应填充准则,首先使用K均值算法将种群划分为k个子种群.通过划分邻域, 将子种群自适应地分成不同类型,根据子种群的类型选择个体,提升计算资源的利用率.在选择个体时,侧重于对收敛性压力的维持,提升收敛速度.将选出的个体用于更新模型和档案.实验结果表明,DC-EMEA能够很好地平衡收敛性和多样性,同时具有较强的收敛能力.  相似文献   

15.
针对目前用多目标进化算法(MOEA)处理约束多目标优化问题(CMOP)的研究通常以解决单一类型约束为主,而在面对不同种类的复杂约束时算法难以收敛或者种群分布性差的问题,以基于分解的多目标进化算法(MOEA/D)框架为基础,提出一种基于参考向量的自适应约束多目标进化算法(ARVCMOEA).首先将参考向量分成主参考向量及...  相似文献   

16.
基于空间距离的多目标差分进化算法*   总被引:1,自引:0,他引:1  
在经典差分进化的基础上,提出了一种基于空间距离的多目标差分进化算法(SD-MODE),与目前经典算法NSGA-Ⅱ和ε-MOEA 进行比较,结果表明该算法拥有良好的分布性,同时也较好地改善了收敛性。  相似文献   

17.
动态多目标优化问题(Dynamic multi-objective optimization problems, DMOPs)的目标函数发生变化时, 需要采取变化响应策略对种群进行重新初始化, 以快速追踪新环境中的最优解集. 现有动态多目标优化算法对不同个体、不同维度的决策变量缺乏针对性的变化响应, 导致重新初始化效果尚存在较大改进空间. 为此, 提出一种对不同个体、不同维度的决策变量分别进行自适应变化响应的动态多目标进化算法(Dynamic multi-objective evolutionary algorithm with adaptive change response, DMOEA-ACR). 该算法包括两个核心部分: 1)对$t $时间步最优种群和$t-1 $时间步最优种群中对应个体各维度决策变量之间的差异进行计算, 自适应选择变异策略或预测策略重新初始化不同个体、不同维度的决策变量; 2)在每轮迭代或重新初始化后, 对非支配个体进行存档, 基于存档中心构建预测策略. 为验证DMOEA-ACR的有效性, 在最新测试问题集SDP和DF上, 将其与动态多目标优化领域的6种先进算法进行对比. 实验结果表明, DMOEA-ACR在求解动态多目标优化问题时, 具有明显优势.  相似文献   

18.
研究表明,现有的多目标进化算法在处理具有不同Pareto前沿的优化问题时难以有效平衡种群的收敛性与多样性.鉴于此,提出一种基于自适应参考向量和参考点的高维多目标进化算法(adaptive reference vector and reference point based many-objective evlolutionary algorithm, ARVRPMEA).ARVRPMEA主要利用种群稀疏性自适应调整参考向量和参考点以提高种群多样性,首先,生成均匀分布的参考向量子集和参考点子集,并利用该参考向量子集分解种群;然后,根据规模最大子种群中解的分布情况生成新的参考向量和参考点,直至满足参考向量集和参考点集规模;最后,为进一步提高种群收敛性,该算法结合指标进行环境选择以保存收敛性较高的个体进入下一代种群.实验结果表明,ARVRP算法在求解具有不同Pareto前沿的问题方面具有良好的性能.  相似文献   

19.
20.
多目标混沌差分进化算法   总被引:12,自引:1,他引:11  
将差分进化算法用于多目标优化问题,提出了多目标混沌差分进化算法(CDEMO).该算法利用混沌序列初始化种群,并用混沌备用种群进行替换操作.该操作不仅起到了维持非劣最优解集均匀性的作用,而且增强了算法的搜索功能.对CDEMO的性能进行研究,数值实验结果表明了CDEMO的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号