首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The driven-right-leg (DRL) circuit has been commonly used in the wall-powered EEG systems to reduce common-mode interference in the bio-potential amplifier. However, DRL circuit imposes limitations on the number of channels preventing modular development, and its effectiveness is diminished for a newer generation of battery-powered EEG systems. We present a performance investigation of DRL-less EEG circuit by designing a single-channel EEG with a novel Analog Front End (AFE) that contains a differential amplifier followed by a high-Q active notch filter. The prototyped wearable EEG system has been validated to record neural signals with and without the DRL circuit. The time domain and frequency domain signals show that the designed AFE is not impacted significantly (maximum 4 dB difference) by the DRL elimination and maintains similar signal quality. The customized EEG with and without DRL offers CMRR of 72.98 dB and 71.74 dB, respectively, at 60 Hz (power-line interference range in the USA), whereas CMRR of 72.64 dB and 71.01 dB, respectively, at 20 Hz (representative EEG signal range). DRL elimination allows us to envision a sensor-level modular EEG system for neural monitoring in non-clinical environments.  相似文献   

2.
There is a growing interest in accurately measuring the timing of the J peak of the ballistocardiogram (BCG) in order to obtain cardiovascular function markers non-invasively, especially in modern home healthcare applications. In this paper we have studied the effect that some common uncertainty sources have in the time measurement of the J peak. This is a necessary step towards the standardization of modern ballistocardiography systems equivalent to that available for ECG systems. We conclude that, to reduce J peak time uncertainty below the measured intrinsic uncertainty of about ±2 ms, the minimal bandwidth should be from 1.5 Hz to 22.5 Hz; the sampling frequency can be decreased up to 50 Hz when using cubic spline interpolation; 5 bits are required to quantify the signal, and signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR) should be over 40 dB and 3 dB respectively.  相似文献   

3.
In this paper, RTK-GPS system was used for movement data collection. Two identification models namely; Multi input–single output (MISO) robust fit regression and Neural Network Auto-Regression Moving Average with eXogenous input (NNARMAX) models were used for the identification of these data. The analysis of test results indicate that: (1) the NNARMAX [4 4 1 1] and [5 4 1 5] models defined by taking into account the results of robust regression analysis estimate structural movements more accurately than the NNARMAX [0 1 0 0] model, and (2) the robust fit regression models have good capacities for mapping relationship of applied loads effects factors and displacements of tower. However, temperature and humidity effects on the entire modal shapes are insignificant and (3) the traffic loads are the main factor affects tower bridge displacement.  相似文献   

4.
Electrical impedance tomography (EIT) is a non-invasive approach to reconstruct the cross-section impedance image of the body. Many EIT systems and impedance image reconstruction algorithms have been proposed in previous studies. However, most of these EIT systems are bulky to cause the limitation of applications. In this study, a wearable and wireless EIT system is proposed to reconstruct impedance images non-invasively and wirelessly. By microminiaturizing the conventional EIT system, the proposed system can provide the advantages of small volume and wireless transmission to reduce the application limitation of conventional EIT systems. Finally, the phantom experiment is tested to validate the performance of the proposed EIT system. The experimental results show the average BR value of the reconstructed image obtained by the proposed system being 1.3 ± 0.2 and the averaged location error ratio being about 6.27 ± 3.14%. Therefore, the proposed wearable and wireless EIT system can be viewed as a good system prototype and may be applied to more clinical applications in the future.  相似文献   

5.
In this paper, two silicon nitride layers with thickness, 0.2 and 0.4 μm, are coated onto single crystal silicon (SCS) in order to achieve Si3N4/Si cantilever microbeams. The effect of LPCVD silicon nitride surface coatings on fatigue properties of SCS cantilever microbeams is investigated. Fatigue testing is conducted at both 40 Hz and 100 Hz. Typical S–N (strain amplitude–fatigue cycle) curves of the beams are achieved and correlated fatigue failure modes are investigated. It is found that thinner Si3N4 coating of 0.2 μm results in better fatigue lives of Si3N4/Si beams than thicker Si3N4 coating of 0.4 μm. Both thinner and thicker coated beams have major fatigue crack planes along {1 1 1} planes; however, thicker coated beams possess specific failure mode of delamination, which is not found in thinner coated beams. Delamination reduces the reinforcing effect of thicker Si3N4 coating and leads to its shorter fatigue life. For thicker coated beams, fatigue life at 100 Hz is longer than that at 40 Hz. The mechanism for delamination and the effect of cyclic frequency is investigated, and factors for better fatigue life are proposed.  相似文献   

6.
This work presents the design of a MEMS accelerometer that is specifically intended for Structural Health Monitoring (SHM) applications where sensing low frequency low amplitude accelerations with high resolution is essential. The surface micromachined comb drive capacitance accelerometer structure has been considered in this design. The simulation experiments conducted on these devices using IntelliSuite MEMS design tool show that it has excellent displacement sensitivity of 21.39 μm/g, a capacitive sensitivity of 1.22 pF/g and voltage sensitivity of 1783 mV/g/V when it is designed to measure 0–0.1 g. Further, it is seen that it has a very low noise floor of 1.32 μg/√Hz and therefore high resolution. Since the accelerations can be as low as 0.04 g in SHM applications, excellent resolution is the primary goal in this design. Further, one more sensor specifically meant for strong motion seismic application has also been reported. This device has a bandwidth of 0–250 Hz and a noise floor of 5.612 μg/√Hz in addition to a sensor level voltage sensitivity of 97.9 mV/g/V. Finally, the comparison of these results with other similar devices reported in the past clearly illustrates the comparable performance of the present devices. Further, these devices, unlike the commercial low frequency accelerometers and other similar devices reported in the past can be fabricated by surface micromachining and CMOS compatible processes.  相似文献   

7.
Polycarbonate (PC) and Poly (methyl methacrylate) blends were prepared by incorporating Al2O3 into the polymer matrix using solution blending. The modified blends were characterized by X-ray diffraction, Thermogravimetric analysis, and Scanning electron microscopy. The crystalline to amorphous phase variation was confirmed by XRD with increase in the interplanar distance (d). TGA results indicate that the thermal stability of the modified blend was significantly improved as a function of alumina loading which may be due to interfacial interaction between the alumina particles and the polymers. Scanning electron microscopy studies reveal the presence of alumina particles resulting in plane surface morphology. The modified blends show very high dielectric constant value (105–107) as a function of frequency (in the range 50 Hz–35 MHz) and temperature in the range (40–150 °C). The modified polymer blend demonstrate consistent polarization across the frequency band 50 Hz–10 kHz. The neutral aggregates formation due to higher concentration of alumina loading demonstrated an influence on AC conductivity. This investigation can be feasible for electronic and electrical engineering application as the dielectric medium.  相似文献   

8.
Sintered and sintered/gas nitrided cylinders made of low alloyed chromium steel Astaloy CrL + 0.45 C at 7.25 g/cm3 density, have been tested for scuffing resistance and wear rate in a crossed cylinders test setup lubricated with a commercial SAE 10W40 engine oil at 90 °C. The results show large potential of 1 h gas nitriding of the sintered chromium steel cylinders. The nitrided cylinders experienced safe wear at 1000 MPa and scuffing at 1100 MPa at 2.5 m/s. At 0.5 and 0.1 m/s at least up to 800 MPa the wear was mild, as sintered chromium cylinders showed scuffing at pressure lower than 320 MPa and limited wear at 0.5 and 0.1 m/s.  相似文献   

9.
Phase noise is an important parameter to characterise the frequency stability of oscillators and synthesised signal generators. Accurate measurement of phase noise is required for various applications in radar, communication and navigation systems. A single-channel phase-detector based phase noise measurement system is described. The system’s measurement errors and uncertainties have been analysed in details. The expanded uncertainty is about 2.7 dB for calibrating phase noise of a signal generator at 0.001–1.6 GHz for frequency offsets from 1 Hz to 100 kHz. The uncertainty budget for measuring a signal generator’s phase noise at 640 MHz is also presented.  相似文献   

10.
A long-range, precision fast tool servo (FTS) system was developed that is capable of accurately translating the cutting tool on a diamond turning machine (DTM) with maximum accelerations of 260 m s?2 and bandwidths of up to 140 Hz. The maximum displacement range of the cutting tool is 2 mm. The FTS utilizes a flexure mechanism driven by a voice coil actuator, a custom linear current amplifier and a laser interferometer feedback system. This paper describes the design of the electromechanical system, controller configuration and cutting tests to evaluate the system. Initially, low disturbance rejection and poor command following degraded the surface finish of machined test parts. Several techniques to add damping to the dynamic system were investigated to improve the generated surface finishes. Electromotive damping was applied inside the voice coil actuator, and two different viscoelastic damping materials were applied to the flexure mechanism. A control strategy consisting of linear and non-linear feedforward controllers and a proportional, integral and derivative (PID) feedback controller was implemented to accommodate the changed system dynamics. The workpieces were analyzed using form and surface inspection instruments to evaluate the overall system performance. A cylindrical part with five lobes cut across the face had a surface finish value between 20 and 30 nm Ra.  相似文献   

11.
This paper presents a novel multi-degree-of-freedom (multi-DOF) micromachined vibratory gyroscope design operated at atmospheric pressure. In this design, the complete 2-DOF vibratory structure is utilized in drive-mode and sense-mode and also, the 2-DOF sense-mode is implemented in both driving frame and proof frame, which form the double 2-DOF sense-modes. The 2-DOF vibratory structure could provide drive-mode and sense-mode with large bandwidth and the double 2-DOF sense-modes could provide high gain of gyroscope system, which improves the inherent robustness and sensitivity simultaneously. The simulation results demonstrate that the summed signal of drive-mode dynamic response is consistent with that of sense-mode and that the gain of proposed multi-DOF micromachined vibratory gyroscope can reach up to −10 dB, increased by above 8 dB compared to the design with single 2-DOF sense-mode. Meanwhile, the 3 dB bandwidth of gyroscope system is larger than 200 Hz.  相似文献   

12.
This paper studies the use of 3 ionic liquids ([(NEMM)MOE][FAP], [BMP][FAP] and [BMP][NTf2]) as neat lubricant within steel–steel contact conditions. Tribological tests (at 40 and 100 °C) were conducted in a HFRR tribometer and hence a complementary study was developed using a MTM tribometer. The wear surface on the discs was measured after the HFRR tests by confocal microscopy and also analyzed by SEM and XPS. The [BMP][NTf2] showed the lowest friction coefficient in the MTM and HFRR tests at 40 °C but at 100 °C its tribological behavior worsened due to its lowest viscosity. Similar results were found for wear behavior. Both antifriction and antiwear results were related to the tribofilms formation from the ECR and XPS measurements.  相似文献   

13.
This paper presents the design and calibration of an ISO non-compliant orifice plate flowmeter whose intended use is for respiratory function measurements in the bidirectional air flow range ±9 L/min.The novelty of the proposed sensor consists of a plate beveled in both upstream and downstream sides: a symmetrical geometry is adopted in order to perform bidirectional measurements of flow rate. A mathematical model is introduced to quantify the influence of temperature on the sensor output. Four different positions of the pressure static taps are evaluated in order to maximize bidirectionality. An index is also introduced in order to quantitatively estimate the anti-symmetry of the sensor's response curve.Trials are carried out to evaluate the influence on sensor output of air temperatures (22 °C, 30 °C and 37 °C) at different values of relative humidity (5%, 55% and 85%). Experimental data show a quite good agreement with the theoretical model (R2>0.98 in each condition).The influence of air temperature on the sensor output is minimized by introducing a correction factor based on the theoretical model leading to measurement repeatability better than 2% in overall range of calibration. The mean sensitivity in the calibration range is about 2 kPa L−1·min allowing to obtain a sensor discrimination threshold lower than 0.2 L/min in both directions. The time constant of the whole measurement system, equal to 2.40±0.03 ms, leads to a bandwidth up to 80 Hz making the sensor suitable for respiratory function measurements.  相似文献   

14.
《Measurement》2013,46(1):411-419
In this paper, the influence on humidity sensitive characteristics of micro/nano-polyaniline (PANI) thin films with different doping degree of (1S)-(+)-10-camphorsulfonic acid (D-CSA) is investigated. The PANI is synthesized by an in situ chemical oxidative polymerization of aniline in the presence of ammonium peroxydisulfate (APS) acidic at ice–water bath for 10 h, and characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. Then, the composite films are formed between interdigital electrodes on a silicon (Si) substrate via self-assembly method. The humidity sensitive characteristics of the PANI films are measured. The experimental results show that the conductivity of PANI increases with increasing the molar ratios of [D-CSA]/[Ani]. Besides, the humidity sensitivity of the PANI films enhances with increasing the molar ratios of [D-CSA]/[Ani] and decreasing the layer number of PANI films, respectively. The PANI films with [D-CSA]/[Ani] molar ratio of 1.0 ([D-CSA]/[Ani] = 1:1) has higher sensitivity. The results indicate that the doping degree of D-CSA actually influences on the humidity sensitive characteristics of PANI thin films, and may be referencing significance for the fabrication of better humidity sensor.  相似文献   

15.
This paper presents a new design method to synthesize multiple degrees-of-freedom (DOF) spatial-motion compliant parallel mechanisms (CPMs). Termed as the beam-based structural optimization approach, a novel curved-and-twisted (C-T) beam configuration is used as the basic design module to optimize the design parameters of the CPMs so as to achieve the targeted stiffness and dynamic characteristics. To derive well-defined fitness (objective) functions for the optimization algorithm, a new analytical approach is introduced to normalize the differences in the units, e.g., N/m or N m/rad, etc., for every component within the stiffness matrix. To evaluate the effectiveness of this design method, it was used to synthesize a 3-DOF spatial-motion (θx  θy  Z) CPM that delivers an optimized stiffness characteristics with a desired natural frequency of 100 Hz. A working prototype was developed and the experimental investigations show that the synthesized 3-DOF CPM can achieved a large workspace of 8°×8°×5.5 mm, high stiffness ratios, i.e., >200 for non-actuating over actuating stiffness, and a measured natural frequency of 84.4 Hz.  相似文献   

16.
Composite solid electrolytes (1  x) Na2SO4–(x) V2O5 were prepared and characterized by various techniques such as XRD, FT-IR, DTA and SEM. AC impedance spectroscopy revealed that the contribution of grain is strong enough over the grain boundary. Arrhenius plot of the Na2SO4 shows a sharp increase in conductivity at 523 K due to the structural phase transition (phase V  I). Composites show the enhanced ionic conductivity than the pristine Na2SO4 over the entire temperature range. The maximum conductivity σ = 0.003 S cm−1 at 773 K with the lowest activation energy of 0.28 eV was observed for the x = 0.4 sample. The enhanced value of dielectric constant and dielectric loss in the case of composites was obtained because of increase of conductivity, resulted from the increase of space charge polarization and charge motion.  相似文献   

17.
The detection of contaminated food in every stage of processing required new technology for fast identification and isolation of toxicity in food. Since effect of food contaminant are severe to human health, the need of pioneer technologies also increasing over last few decades. In the current study, MDA was prepared by hydrolysis of 1,1,3,3-tetramethoxypropane in HCl media and used in the electrochemical studies. The electrochemical sensor was fabricated with modified glassy carbon electrode with polyaniline. These sensors were used for detection of sodium salt of malonaldehyde and observed that a high sensitivity in the concentration range ∼1 × 10−1 M and 1 × 10−2 M. Tafel plots show the variation of over potential from  1.73 V to  3.74 V up to 10−5 mol/L indicating the lower limit of detection of the system.  相似文献   

18.
This paper addresses rolling contact fatigue (RCF) testing in ultra high vacuum (UHV) under high speed conditions. A ball–rod RCF test platform has been adapted for testing in UHV conditions that allows rapid accumulation of stress cycles, over 10 million cycles within 5 h of testing at 130 Hz rotation. The UHV environment and solid lubrication enables good vibration detection for the onset of spall. In this paper, approximately 0.2 μm of silver is applied to the balls and provides sufficient lubrication for up to 25 h of testing, or 50 million stress cycles in high vacuum at 130 Hz. Seventy-nine RCF tests using thin-film silver lubrication have been completed covering two ball sizes, and two rod and ball materials. 9.53 mm diameter Rex 20 steel and silicon-nitride (Si3N4) rods were tested against 7.94 mm diameter Rex 20 and 12.7 mm diameter M50 steel balls. It was found that ball size and material hardness did not affect the stress cycle life over a Hertzian contact stress range of 2.1–4.2 GPa and Rockwell C hardness range of 62–77. Rather, the key limiter to test length is lubrication depletion based on 79 tests and an average silver thickness of 0.2 μm. One of the two failure modes were observed for all tests: (i) early life spall of the silver coating, and (ii) depletion of silver lubrication followed by spall failure of both the ball and rod surfaces. A third-body storage model along with the Control Volume Fraction Coverage (CVFC) assumption and analysis was used to predict lubrication availability between asperities on the third body. There is good agreement between calculated and measured post-test lubrication thickness using the third-body storage model.  相似文献   

19.
The demand for higher speeds and torque capacity from micro turbines, heat pumps and turbochargers has necessitated the development of high temperature resistant foil bearings. This paper focuses on investigating the effects of successive thermal cycles on the levitation speed of bump foil bearings made up of low cost spring steel. Bump foil bearings were designed for high stiffness of 1.64 MN/m2. Rotor dynamic analysis indicated highest frequency of 4790.5 Hz corresponding to second flexure mode of rotor bearing system up to which it remained stable. The bump foil bearing fabrication procedure was established and rotor was tested under suitably designed bearing rig. The orbital analysis indicated that levitation speed decreased with increase in temperature. During second and third thermal cycle, at lower rotor speeds drastic variations in amplitude of vibrations and uneven waveforms were indicative of unbalance condition of rotor. With further increase in rotor speeds, the rotor - bump foil bearing system attained the balanced state indicative of safe design.  相似文献   

20.
Flexure-based parallel mechanisms (FPMs) are a type of compliant mechanisms that consist of a rigid end-effector that is articulated by several parallel, flexible limbs (a.k.a. sub-chains). Existing design methods can enhance the FPMs’ dynamic and stiffness properties by conducting a size optimization on their sub-chains. A similar optimization process, however, was not performed for their sub-chains’ topology, and this may severely limit the benefits of a size optimization. Thus, this paper proposes to use a structural optimization approach to synthesize and optimize the topology, shape and size of the FPMs’ sub-chains. The benefits of this approach are demonstrated via the design and development of a planar X  Y  θz FPM. A prototype of this FPM was evaluated experimentally to have a large workspace of 1.2 mm × 1.2 mm × 6°, a fundamental natural frequency of 102 Hz, and stiffness ratios that are greater than 120. The achieved properties show significant improvement over existing 3-degrees-of-freedom compliant mechanisms that can deflect more than 0.5 mm and 0.5°. These compliant mechanisms typically have stiffness ratios that are less than 60 and a fundamental natural frequency that is less than 45 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号