首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对实际工况下调压器标记样本稀缺导致故障诊断效果不佳的问题,基于自训练算法与半监督生成对抗网络(semi-supervisedgenerativeadversarialnetwork,SGAN)设计了故障诊断模型。首先,对燃气调压器一维压力信号进行预处理,得到灰度图像样本。之后,基于深度卷积生成对抗网络,设计SGAN进行特征提取,判别器采用具有共享权值的堆叠鉴别器模型。然后,设计自训练算法,使用训练好的初始分类器预测无标签样本的类别标签。最后,采用重复标记方式将满足要求的样本扩充到有标签样本集重新训练,保存最终的分类器。实验结果表明,在少量调压器标签样本的情况下,所提模型依旧具有良好的性能。  相似文献   

2.
现代语音合成和音色转换系统产生的虚假语音对自动说话人识别系统构成了严重威胁。大多数现有的虚假语音检测系统对在训练中已知的攻击类型表现良好,但对实际应用中的未知攻击类型检测效果显著降低。因此,结合最近提出的双路径Res2Net(DP-Res2Net),提出一种基于时域波形的半监督端到端虚假语音检测方法。首先,为了解决训练数据集和测试数据集两者数据分布差异较大的问题,采用半监督学习进行领域迁移;然后,对于特征工程,直接将时域采样点输入DP-Res2Net中,增加局部的多尺度信息,并充分利用音频片段之间的依赖性;最后,输入特征经过浅层卷积模块、特征融合模块、全局平均池化模块得到嵌入张量,用来判别自然语音与虚假伪造语音。在公开可用的ASVspoof 2021 Speech Deep Fake评估集和VCC数据集上评估了所提出方法的性能,实验结果表明它的等错误率(EER)为19.97%,与官方最优基线系统相比降低了10.8%。基于时域波形的半监督端到端检测虚假语音检测方法面对未知攻击时是有效的,且具有更高的泛化能力。  相似文献   

3.
恶意流量检测是应对网络安全挑战的关键技术之一。针对采用联邦学习进行恶意流量检测时,本地标记数据不足,非独立同分布(non-IID)导致协同训练模型性能下降的问题,构建一种基于半监督联邦学习的恶意流量检测模型。该模型借助伪标记和一致性正则化项的半监督学习技术,有效地从未标记数据中提取信息进行训练;同时,设计一种非线性函数,用于动态调整客户端本地有监督和无监督损失在聚合时的权重,以充分利用未标记数据,提高模型的准确性。为降低non-IID问题对全局模型性能的影响,提出一种联邦聚合算法FedLD(Federated-Loss-Data),通过结合训练损失和数据量的权重计算方法,自适应地调整全局模型聚合过程中各客户端模型的权重。实验结果表明,在NSL-KDD数据集上,所提模型在标记数据有限的情况下能够实现较高的检测准确率,与基线模型FedSem(Federated Semi-supervised)相比,检测准确率提升了4.11个百分点,在正常流量(Normal)、拒绝服务(DoS)攻击和探测(Probe)等类别上的召回率也提升了1.65~7.66个百分点,说明所提模型更适用于恶意流量检测领域。  相似文献   

4.
5.
一致性正则化半监督视频动作检测方法对原始数据和增广数据进行特征表示时容易引起两类数据间判别域偏差,导致判别结果无法拟合.针对该问题,文中提出特征增强与残差重塑的多重一致性约束半监督视频动作检测方法.首先,将基础动作特征描述子在时空维进行连续性增强编码,获取视频动作理解中至关重要的上下文信息.然后,在通过残差特征重塑模块获得多尺度残差信息的同时进行特征重塑.为了降低不同数据间的判别偏差,分别从分类特征与动作定位特征角度对原始数据和增广数据施加多重一致性约束,实现模型对增广数据和原始数据判别结果和特征表示的匹配.最后,在JHMDB-21、UCF101-24数据集上的实验表明,文中方法能有效提高少样本标记条件下视频动作检测准确度,具有较强的竞争力.  相似文献   

6.
在入侵检测方法中,半监督学习作为一种特殊的学习形式,结合了监督学习与非监督学习在检测已知模式数据与未知模式数据方面各自的优点.据此,为进一步提高入侵检测系统的检测准确性,提出一种结合SVM与KMO(online kmeans)算法各自优点的半监督入侵检测模型.该模型首先利用SVM算法对全部的输入数据进行区分,然后将其认为的合法数据集用KMO算法分类,以该结果作为决策模块的输入并做出最终的响应.实验显示,文中模型比单独使用其中的任一种方法具有更高的检测准确率.由此可见,该模型对于实际的入侵检测系统具有实用价值.  相似文献   

7.
为了降低语义分割任务对像素级标签的需求,提出一种基于对抗学习和Mean teachers模型的半监督语义分割方法。该方法训练过程分为两个阶段,第一阶段在分割网络之后连接判别网络,通过对抗学习使分割网络预测结果逐渐接近真实标签;第二阶利用第一阶段的网络参数做指数移动平均得到教师网络,与分割网络做一致性训练,使模型性能进一步提升。使用PASCAL VOC 2012数据集进行实验,结果表明在使用相同数量的标签训练下,该方法的分割图的质量和评价指标mIoU优于现有半监督语义分割方法。  相似文献   

8.
现有的半监督声音事件检测方法直接使用强标签合成样本、弱标签真实样本和无标签真实样本进行训练,以缓解标签样本量不足的问题。然而,合成和真实数据域之间存在不可避免的分布差异,这种差异会干扰模型梯度优化方向,从而限制模型的泛化能力。针对这一问题,基于元学习(Meta Learning)提出了一种新颖的半监督声音事件检测学习范式MMT(Meta Mean Teacher)。具体来说,对于每个训练批次的数据,将其分为由合成样本组成的元训练集和由真实样本组成的元测试集;将模型在元训练集上计算的元梯度作为元测试梯度更新的指导,使模型感知并学习到更具泛化性的知识。在DCASE2021任务4数据集的测试集上进行对比实验,结果表明,相较于官方基线,所提出的学习范式MMT在F1,PSDS1和PSDS2指标上分别提升了8.9%,6.6%和1.1%;相较于当前的先进方法,所提出的学习范式MMT同样表现出了显著的性能优势。  相似文献   

9.
为降低数据标注的成本并提高投诉文本分类的准确率,本文提出基于半监督协同训练的多标签文本分类模型。该模型通过构建多个基分类器组的方式进行训练,其中每个基分类器组都由随机森林和支持向量机组成,并通过打伪标签的方式扩充有标签数据集进行循环训练至模型收敛,最终整合分类结果,充分发挥各学习器在不同特征上的分类优势,并在实验中验证该模型的有效性。  相似文献   

10.
目前基于深度学习的医学图像分割方法往往需要大量带标记数据训练网络模型,然而医学影像的标记数据获取通常非常昂贵,半监督学习能使模型利用大量未标记数据和少量标记数据学习。该文提出了一种基于跨任务一致性的半监督学习框架来降低神经网络模型训练时需要的标记数据成本。该方法利用V-Net网络作为主干框架并添加两个辅助解码器,同时在解码器中引入一个辅助回归任务,提高模型分割性能,并在主副解码器的分割任务和回归任务之间施加正则化约束的跨任务一致性损失,该框架能够学习到大量未标记数据的几何先验信息。在LiTS2017 Challenges数据集上验证了该方法的有效性。在使用20%标记数据的实验中,该方法的Dice系数和Jaccard指数分别达到了93.95%和88.87%,相比全监督V-Net网络模型训练下的Dice系数和Jaccard系数分别提高了3.60百分点和5.78百分点。实验结果表明,该方法在使用少量带标记数据情况下达到接近100%带标记数据训练分割肝脏的精度,与其他的半监督方法相比分割精度更优。  相似文献   

11.
针对有标签信号样本数目较少的实际环境中,通信辐射源个体识别技术存在识别准确率较低的问题,提出改进的一致性正则半监督辐射源个体识别方法,在一致性正则方法中引入伪标签思想的改进方案,在3种一致性正则模型上分别加入伪标签正则项.实验中设计适合实采信号数据的Inception深度网络,探究实验参数变化对实验结果的影响,实验结果...  相似文献   

12.
针对如何优化深度学习技术在海量高维复杂的无线网络流量数据中有效发现异常攻击行为的问题,提出一种基于半监督学习的无线网络攻击行为检测优化方法(WiFi network attacks detection optimization method, WiFi-ADOM).首先基于无监督学习模型栈式稀疏自编码器提出2种网络流量特征表示向量:新特征值向量和原始特征权重值向量.然后利用原始特征权重值向量初始化监督学习模型深度神经网络的权重值得到网络攻击类型的预判结果,并通过无监督学习聚类方法Bi-kmeans对网络流量的新特征值向量进行聚类以生成未知攻击类型判别纠正项.最后结合预判结果和未知攻击类型判别纠正项,得到网络攻击类型的最终判定结果.通过和已有研究方法对比,在公开无线网络攻击行为数据集AWID上验证了WiFi-ADOM方法对网络攻击行为检测的优化性能,同时探索了与网络攻击检测相关的重要特征属性的问题.实验结果表明:WiFi-ADOM方法在保证准确率等检测性能的同时能够有效检测未知攻击类型,具备优化网络攻击行为检测的能力.  相似文献   

13.
郭涛  李贵洋  兰霞 《计算机工程与设计》2012,33(9):3584-3587,3621
针对协同训练算法对无标记数据挑选效率较低,导致噪声数据引入问题,提出了基于图的置信度估计半监督协同训练算法(CESL).利用样本数据自身的结构信息,显式计算无标记样本所属类别概率.同时,采用了多分类器隐式对无标记数据进行置信度估计,以提高无标记数据挑选标准.将显示计算和隐式估计结合对无标记数据进行选择,减低噪音数据的引入,更新分类器.在UCI数据集上的对比实验表明了该算法的有效性.  相似文献   

14.
半监督学习,与传统的监督学习不同,能同时在少量的已标记数据和大量的未标记数据上进行学习,从而提高性能。协同训练是一种流行的半监督学习算法,已成为目前机器学习和模式识别领域中的一个研究热点。综述半监督学习协同训练的基本思想、研究现状、常用算法,分析目前存在的主要困难,并指出需进一步研究的几个问题。  相似文献   

15.
在实际的分类任务中,无标记样本数量充足而有标记样本数量稀少的情况经常出现,目前处理这种情况的常用方法是半监督自训练分类算法。提出了一种基于数据密度的半监督自训练分类算法,该算法首先依据数据的密度对数据集进行划分,从而确定数据的空间结构;然后再按照数据的空间结构对分类器进行自训练的迭代,最终得到一个新的分类器。在UCI中6个数据集上的实验结果表明,与三种监督学习算法以及其分别对应的自训练版本相比,提出的算法分类效果更好。  相似文献   

16.
检测恶意URL对防御网络攻击有着重要意义.针对有监督学习需要大量有标签样本这一问题,本文采用半监督学习方式训练恶意URL检测模型,减少了为数据打标签带来的成本开销.在传统半监督学习协同训练(co-training)的基础上进行了算法改进,利用专家知识与Doc2Vec两种方法预处理的数据训练两个分类器,筛选两个分类器预测...  相似文献   

17.
18.
将支持向量机与半监督学习理论相结合,提出基于支持向量机协同训练的半监督回归模型,使用两个支持向量机回归模型相互影响,协同训练。利用实验数据集进行实验,并与监督支持向量机回归模型、半监督自训练支持向量机回归模型作比较。实验结果表明,基于支持向量机协同训练的半监督回归模型在缺少标记样本的情况下,提高了回归估计的精度。  相似文献   

19.
由于传统半监督模式下的多视图算法很少考虑到不同视图中数据包含信息的差异性,且忽视了不同视图间存在着空间结构的一致性,算法在含有噪声和异常点的多视图数据中性能较差。尽管有研究者已经提出了半监督多视图方法,但这些方法没有充分利用样本判别信息以及不同度量学习下的子空间结构信息,从而导致分类结果不理想。针对以上问题,提出了一致性约束的半监督多视图分类算法(SMCC)。首先,基于希尔伯特-施密特独立性准则(HSIC)加强对不同视图之间的一致性约束。然后,通过保留原始数据的空间局部流形结构进行特征投影来降低数据空间维度,并结合F范数约束提高算法的鲁棒性。进一步,对不同视图自适应地赋予相应的权重,降低在不同视图中数据含有不同特征信息与噪声污染的影响。最后,基于线性交替方向乘子法与特征分解方法对模型进行求解。在四个基准数据集上的实验结果表明,提出的算法能够捕获多视图数据中更多的有效判别信息,准确性得到了提高。  相似文献   

20.
郭涛  李贵洋  兰霞 《计算机工程》2012,38(13):163-165,168
在分类器训练过程中,无标记数据的引入容易产生噪音,从而降低分类精度。为此,提出一种基于图的置信度估计半监督协同训练算法。利用样本数据自身的结构信息,计算无标记样本所属类别概率。采用多分类器对无标记数据进行置信度估计,以提高无标记数据挑选标准,减少噪音数据的引入。在UCI数据集上的对比实验验证了该算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号