共查询到20条相似文献,搜索用时 11 毫秒
1.
针对实际工况下调压器标记样本稀缺导致故障诊断效果不佳的问题,基于自训练算法与半监督生成对抗网络(semi-supervisedgenerativeadversarialnetwork,SGAN)设计了故障诊断模型。首先,对燃气调压器一维压力信号进行预处理,得到灰度图像样本。之后,基于深度卷积生成对抗网络,设计SGAN进行特征提取,判别器采用具有共享权值的堆叠鉴别器模型。然后,设计自训练算法,使用训练好的初始分类器预测无标签样本的类别标签。最后,采用重复标记方式将满足要求的样本扩充到有标签样本集重新训练,保存最终的分类器。实验结果表明,在少量调压器标签样本的情况下,所提模型依旧具有良好的性能。 相似文献
2.
现代语音合成和音色转换系统产生的虚假语音对自动说话人识别系统构成了严重威胁。大多数现有的虚假语音检测系统对在训练中已知的攻击类型表现良好,但对实际应用中的未知攻击类型检测效果显著降低。因此,结合最近提出的双路径Res2Net(DP-Res2Net),提出一种基于时域波形的半监督端到端虚假语音检测方法。首先,为了解决训练数据集和测试数据集两者数据分布差异较大的问题,采用半监督学习进行领域迁移;然后,对于特征工程,直接将时域采样点输入DP-Res2Net中,增加局部的多尺度信息,并充分利用音频片段之间的依赖性;最后,输入特征经过浅层卷积模块、特征融合模块、全局平均池化模块得到嵌入张量,用来判别自然语音与虚假伪造语音。在公开可用的ASVspoof 2021 Speech Deep Fake评估集和VCC数据集上评估了所提出方法的性能,实验结果表明它的等错误率(EER)为19.97%,与官方最优基线系统相比降低了10.8%。基于时域波形的半监督端到端检测虚假语音检测方法面对未知攻击时是有效的,且具有更高的泛化能力。 相似文献
4.
在入侵检测方法中,半监督学习作为一种特殊的学习形式,结合了监督学习与非监督学习在检测已知模式数据与未知模式数据方面各自的优点.据此,为进一步提高入侵检测系统的检测准确性,提出一种结合SVM与KMO(online kmeans)算法各自优点的半监督入侵检测模型.该模型首先利用SVM算法对全部的输入数据进行区分,然后将其认为的合法数据集用KMO算法分类,以该结果作为决策模块的输入并做出最终的响应.实验显示,文中模型比单独使用其中的任一种方法具有更高的检测准确率.由此可见,该模型对于实际的入侵检测系统具有实用价值. 相似文献
5.
针对如何优化深度学习技术在海量高维复杂的无线网络流量数据中有效发现异常攻击行为的问题,提出一种基于半监督学习的无线网络攻击行为检测优化方法(WiFi network attacks detection optimization method, WiFi-ADOM).首先基于无监督学习模型栈式稀疏自编码器提出2种网络流量特征表示向量:新特征值向量和原始特征权重值向量.然后利用原始特征权重值向量初始化监督学习模型深度神经网络的权重值得到网络攻击类型的预判结果,并通过无监督学习聚类方法Bi-kmeans对网络流量的新特征值向量进行聚类以生成未知攻击类型判别纠正项.最后结合预判结果和未知攻击类型判别纠正项,得到网络攻击类型的最终判定结果.通过和已有研究方法对比,在公开无线网络攻击行为数据集AWID上验证了WiFi-ADOM方法对网络攻击行为检测的优化性能,同时探索了与网络攻击检测相关的重要特征属性的问题.实验结果表明:WiFi-ADOM方法在保证准确率等检测性能的同时能够有效检测未知攻击类型,具备优化网络攻击行为检测的能力. 相似文献
6.
7.
目前基于深度学习的医学图像分割方法往往需要大量带标记数据训练网络模型,然而医学影像的标记数据获取通常非常昂贵,半监督学习能使模型利用大量未标记数据和少量标记数据学习。该文提出了一种基于跨任务一致性的半监督学习框架来降低神经网络模型训练时需要的标记数据成本。该方法利用V-Net网络作为主干框架并添加两个辅助解码器,同时在解码器中引入一个辅助回归任务,提高模型分割性能,并在主副解码器的分割任务和回归任务之间施加正则化约束的跨任务一致性损失,该框架能够学习到大量未标记数据的几何先验信息。在LiTS2017 Challenges数据集上验证了该方法的有效性。在使用20%标记数据的实验中,该方法的Dice系数和Jaccard指数分别达到了93.95%和88.87%,相比全监督V-Net网络模型训练下的Dice系数和Jaccard系数分别提高了3.60百分点和5.78百分点。实验结果表明,该方法在使用少量带标记数据情况下达到接近100%带标记数据训练分割肝脏的精度,与其他的半监督方法相比分割精度更优。 相似文献
8.
针对有标签信号样本数目较少的实际环境中,通信辐射源个体识别技术存在识别准确率较低的问题,提出改进的一致性正则半监督辐射源个体识别方法,在一致性正则方法中引入伪标签思想的改进方案,在3种一致性正则模型上分别加入伪标签正则项.实验中设计适合实采信号数据的Inception深度网络,探究实验参数变化对实验结果的影响,实验结果... 相似文献
9.
针对协同训练算法对无标记数据挑选效率较低,导致噪声数据引入问题,提出了基于图的置信度估计半监督协同训练算法(CESL).利用样本数据自身的结构信息,显式计算无标记样本所属类别概率.同时,采用了多分类器隐式对无标记数据进行置信度估计,以提高无标记数据挑选标准.将显示计算和隐式估计结合对无标记数据进行选择,减低噪音数据的引入,更新分类器.在UCI数据集上的对比实验表明了该算法的有效性. 相似文献
10.
武永成 《电脑与微电子技术》2012,(20):8-11,16
半监督学习,与传统的监督学习不同,能同时在少量的已标记数据和大量的未标记数据上进行学习,从而提高性能。协同训练是一种流行的半监督学习算法,已成为目前机器学习和模式识别领域中的一个研究热点。综述半监督学习协同训练的基本思想、研究现状、常用算法,分析目前存在的主要困难,并指出需进一步研究的几个问题。 相似文献
11.
在实际的分类任务中,无标记样本数量充足而有标记样本数量稀少的情况经常出现,目前处理这种情况的常用方法是半监督自训练分类算法。提出了一种基于数据密度的半监督自训练分类算法,该算法首先依据数据的密度对数据集进行划分,从而确定数据的空间结构;然后再按照数据的空间结构对分类器进行自训练的迭代,最终得到一个新的分类器。在UCI中6个数据集上的实验结果表明,与三种监督学习算法以及其分别对应的自训练版本相比,提出的算法分类效果更好。 相似文献
12.
检测恶意URL对防御网络攻击有着重要意义. 针对有监督学习需要大量有标签样本这一问题, 本文采用半监督学习方式训练恶意URL检测模型, 减少了为数据打标签带来的成本开销. 在传统半监督学习协同训练(co-training)的基础上进行了算法改进, 利用专家知识与Doc2Vec两种方法预处理的数据训练两个分类器, 筛选两个分类器预测结果相同且置信度高的数据打上伪标签(pseudo-labeled)后用于分类器继续学习. 实验结果表明, 本文方法只用0.67%的有标签数据即可训练出检测精确度(precision)分别达到99.42%和95.23%的两个不同类型分类器, 与有监督学习性能相近, 比自训练与协同训练表现更优异. 相似文献
13.
14.
将支持向量机与半监督学习理论相结合,提出基于支持向量机协同训练的半监督回归模型,使用两个支持向量机回归模型相互影响,协同训练。利用实验数据集进行实验,并与监督支持向量机回归模型、半监督自训练支持向量机回归模型作比较。实验结果表明,基于支持向量机协同训练的半监督回归模型在缺少标记样本的情况下,提高了回归估计的精度。 相似文献
15.
16.
已有的立场分析方法主要采用有监督或无监督方式训练立场分类模型,有监督模型训练通常需要大量有标注数据支持,而相比有监督模型,无监督模型的性能差距较大.为了降低模型训练对有标注训练数据的要求,同时保证模型性能,文中面向社会事件相关的社交媒体文本,提出半监督自训练多方立场分析方法.对于自训练方法,在模型迭代训练过程中,选择高质量样本加入训练集合,对提升模型性能起到关键作用.为此,文中方法首先根据用户立场一致性度量文本的分类置信度,然后利用话题信息进一步筛选高质量样本扩充训练集合,保证模型性能不断提升.实验表明,相比相关工作中的代表性方法和其它半监督模型训练方式,文中方法能够取得更优的立场分类效果,并且方法依据的用户立场一致性和话题信息均有助于提升立场分类效果. 相似文献
17.
作为人工智能领域近十年来最受关注的技术之一,深度学习在诸多应用中取得了优异的效果,但目前的学习策略严重依赖大量的有标记数据.在许多实际问题中,获得众多有标记的训练数据并不可行,因此加大了模型的训练难度,但容易获得大量无标记的数据.半监督学习充分利用无标记数据,提供了在有限标记数据条件下提高模型性能的解决思路和有效方法,... 相似文献
18.
虚假新闻在社交媒体上的广泛传播,给社会带来了不同程度的负面影响。针对虚假新闻早期检测任务中,社交上下文信息不充分的问题,提出一种基于双分支网络联合训练的虚假新闻检测模型。该模型由最大池化网络分支(max pooling branch,MPB)和广义均值池化网络分支(generalized mean pooling branch,GPB)组成。MPB采用卷积神经网络对新闻文章进行文本特征提取,GPB引入了可训练的池化层,学习新闻文章潜在的语义特征。同时,在每个分支网络中,对新闻标题和正文之间进行语义关联性度量。最终,对两个分支网络联合训练后的结果进行决策融合,判断新闻的真实性。实验结果表明,提出的模型在准确率、召回率、F1值评测指标上均优于基线模型,F1值达到94.1%,比最优的基线模型提升了6.4个百分点。 相似文献
19.
针对木马流量检测技术存在人工提取特征不够准确、大量标记样本获取困难、无标记样本没有充分利用、模型对于未知样本识别率较低等问题,提出基于半监督深度学习的木马流量检测方法,利用大量未标记网络流量用于模型训练.首先,采用基于mean teacher模型的检测方法提高检测准确率;然后,为解决mean teacher模型中采用随机噪声导致模型泛化能力不足的问题,提出基于虚拟对抗mean teacher模型的检测方法;最后,通过实验验证所提半监督深度学习检测方法在少标记样本下的二分类、多分类以及未知样本检测任务中具有更高的准确率.此外,基于虚拟对抗mean teacher模型的检测方法在多分类任务中比原始mean teacher模型表现出更强的泛化性能. 相似文献
20.
传统的有监督度量学习算法没有利用大量存在的无标记样本,且得到的度量矩阵复杂,难以了解不同原始特征的重要程度。针对这些情况,提出基于半监督假设的半监督稀疏度量学习算法。根据三样本组约束建立间隔损失函数;基于平滑假设、聚类假设、流形假设这三个半监督假设建立半监督正则项,并利用L_1范数建立稀疏正则项;利用梯度下降法求解目标函数。实验结果表明,该算法学习得到的度量能有效地使不同类别的样本间距离增大,度量矩阵具有稀疏性,分界面穿过低密度区域,该算法在UCI的样本数据集上具有良好的分类准确性。 相似文献