首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以室温下制备出的n(Cu2+)∶n(Cit3-)=2∶1的透明稳定的Cu(Ⅱ)-Cit3--SiO2复合溶胶为电解液,直接在氧化铟锡导电玻璃(ITO)阴极上电沉积得到铜氧化物-SiO2复合薄膜。循环伏安(CV)和X射线衍射(XRD)结果表明,溶胶中Cu2+与吸附在电极上的SiO2溶胶共电沉积形成Cu2O-SiO2凝胶薄膜,XRD和计时安培(CA)结果表明,薄膜中的SiO2量随过电位升高而减少。X射线光电子能谱(XPS)、XRD和能量色散X射线(EDX)结果表明,高过电位下,SiO2和Cu(Ⅱ)借助析氢生成的OH-共沉积,得到CuO/Cu2O-SiO2薄膜,这与扫描电子显微镜(SEM)图片显示的所得薄膜具有两种不同形貌的颗粒的结果一致。  相似文献   

2.
刘文凯  罗洁  杨梓群  张越纯 《功能材料》2024,(3):3122-3127+3137
以硫化钠和硝酸银为原料,采用了化学浴沉积法将Ag2S沉积在高度有序TiO2纳米管(TNTs)上制备出Ag2S/TNTs析氢电极。采用扫描电子显微镜(SEM)、X射线衍射分析(XRD)、X射线光电子能谱分析(XPS)对电极进行表征,结果显示Ag2S颗粒均匀的沉积在TiO2纳米管表面,且没有破坏纳米管原有的形态结构。在0.5 mol/L H2SO4条件下,通过线性扫描伏安法(LSV)、塔菲尔曲线(Tafel)、双电层电容和电化学阻抗谱(EIS)等电化学测试分析了不同Ag2S沉积圈数所得的复合电极的析氢性能。与TNTs相比,Ag2S/TNTs显示出更优异的析氢性能。Ag2S沉积圈数为9圈时制备出的复合电极在10 mA/cm2电流密度时,过电位达到了288.14 mV,Tafel斜率为61.8 mV/dec,双电层电容分别为54.7 mF/cm2...  相似文献   

3.
光生电荷的分离和转移被认为是影响BiVO4基光阳极光电性能的核心因素之一.本文设计了在BiVO4光阳极与析氧助催化剂之间插入空穴提取层的方法.Cu2O作为空穴提取层引入到助催化剂层(FeOOH/NiOOH)和BiVO4之间,可以有效优化空穴的迁移路径,延长光生空穴的寿命,从而提高电极的光电化学性能.与BiVO4相比,调整后的BiVO4/Cu2O/FeOOH/NiOOH光阳极的电荷分离效率从70.6%提高到了92.0%.此外,该光阳极在1.23 VRHE(AM 1.5G照明下)下,还显示出了3.85 mA cm-2的高光电流密度,是BiVO4的2.77倍.我们的研究结果表明,电沉积Cu2O空穴提取层是一种简单且可扩展的方法,能够有效提高BiVO4的光电活性,可用于太阳能驱动水分解领域.  相似文献   

4.
导电玻璃作为基底制备WO3纳米片薄膜,通过改变旋涂BiVO4次数,以WO3纳米片薄膜为基底成功制得不同厚度的WO3/BiVO4复合薄膜样品。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)等分析方法对样品进行表征,并对WO3/BiVO4复合薄膜样品进行吸收光谱、光电流、光电催化和交流阻抗测试。结果表明:WO3/BiVO4复合薄膜样品的光电流密度和光电催化降解效率相较于单一WO3纳米薄膜都得到了提高,具有更好的光电化学性能。且旋涂两次BiVO4的WO3/BiVO4复合薄膜样品有最高的光电流密度值(1.79 mA/cm2)和光电催化降解效率(约为60.5%),比单一WO3材料的光电流密度(1.30 mA/cm2)提高了27.4%,光电催化降...  相似文献   

5.
柔性超级电容器具有超高的功率密度和超长的循环寿命,结合其结构的灵活性、轻质和形状多样性的特点,在储能领域具有巨大的应用潜力。发展柔性超级电容器首先要解决柔性电极制备的难题。本研究通过激光直写技术结合KOH活化得到高柔性、高导电性的微孔石墨烯基底,即活化的激光诱导石墨烯(a-LIG),然后用电化学沉积法在其上沉积二氧化锰,成功开发出柔性a-LIG/MnO2电极。在1 mol/L的Na2SO4电解质中,当电流密度为1 mA/cm2时,复合aLIG/MnO2电极表现出304.61 mF/cm2的高面积比电容。以a-LIG/MnO2为阳极,a-LIG为阴极,PVA/H3PO4为凝胶电解质,组装了柔性非对称超级电容器,在功率密度为260.28μW/cm2时其面积能量密度为2.61μWh/cm2,在电流密度为0.2 mA/cm2时其面积比...  相似文献   

6.
酸性环境中光电化学水分解具有广阔的应用前景,但由于缺乏稳定的光阳极以及有效的非贵金属助催化剂,其发展受到了极大的阻碍. WO3是能够在酸性环境下稳定的半导体之一,但其在光照下的快速性能衰减仍然是一个悬而未决的问题.本研究提出WO3和WO3/SnO2光阳极光电流的快速下降是因为电极/电解质界面上产生的羟基自由基(OH·)导致的.我们发现在pH为0.3的电解质中引入钴(Co2+)离子可以有效解决这个问题. Co2+的存在可以促进H2O高效氧化为O2,而不是产生不利的OH·自由基.最终在Co2+存在条件下,可以将光电分解水的法拉第效率从40%提高到95%,将光电流密度从0.6提高到0.8 mA cm-2,并在1.2 V (可逆氢电极)下稳定25 h.重要的是,在利用维生素C淬灭OH·自由基以后,其光电流稳定性表现出与引入Co2+离子时一致,进一步表明Co...  相似文献   

7.
将CO2转化为高附加值的化学品是实现碳循环, 缓解能源危机和环境问题的有效途径之一。金属与半导体复合电极, 利用光电耦合技术为CO2转化提供了一种新思路。本研究通过电沉积的方法在碱刻蚀处理后的Si片上制备了双金属Bi、Zn共修饰的Si基光电阴极(BiZnx/Si), 用于CO2的光电催化还原。研究表明, 引入金属Bi和Zn能够改善光的吸收性能, 降低电化学阻抗, 提高电化学活性比表面积(ECSA)。其中, BiZn2/Si最优的光电极电化学比表面积可达0.15 mF·cm-2。除此之外, 研究发现双金属共同作用有助于增强电极对中间体*OCHO的吸附作用, 在-0.8 V(vs. RHE)电势下, 最优的光电阴极BiZn2/Si生成HCOOH的法拉第效率高达96.1%。更重要的是, 光电阴极BiZn2/Si的光电流强度在10 h内维持-13 mA·cm-2, 表现出良好的性能稳定性。  相似文献   

8.
贵金属IrO2和RuO2被广泛认为是优异的析氧(OER)催化剂,但是高成本限制其应用与发展,故开发高效的非贵金属OER催化剂具有重大的实际意义和应用前景。采用简便的电化学法制备了一种三维异质结电极Co(OH)2/Cu(OH)2作为优良的OER催化剂。Co(OH)2/Cu(OH)2由于其三维异质结构,使其具有较大的比表面积和充足的活性位点,同时调节了表面Co的电子结构进而提高OER活性,表现出优良的催化性能。在1mol/L KOH溶液中,Co(OH)2/Cu(OH)2能在270mV的低过电位下达到10mA/cm2,并且能保持在100mA/cm2的大电流密度下较长时间进行OER反应,是一种优良的OER催化剂。  相似文献   

9.
以水热法在氟掺杂的氧化锡透明导电玻璃(FTO)上制备的TiO2纳米棒阵列为衬底, 通过连续化学水浴沉积(S-CBD)法将CdS量子点 (QDs)沉积在TiO2纳米棒上, 形成CdS/TiO2阵列复合材料。分别利用高分辨透射电子显微镜(HRTEM)、 场发射扫描电子显微镜(FESEM)、 X射线衍射(XRD)和紫外可见光谱(UV-vis)等对样品的形貌、 晶型以及光吸收性能进行了表征。结果表明, TiO2纳米棒阵列长度约为2.9 μm, CdS QDs的尺寸大约在5~9 nm。随着沉积层数的增加, CdS QDs的厚度增加, 同时伴随着光吸收边的红移。通过电流-电压特性曲线对其光电流-电压特性进行了分析, 发现光电流和光电转换效率均呈现出先增大后减小的规律。100 mW/cm2的光照下, 在S-CBD为7层时, 光电流和开路电压最大值分别达到2.49 mA·cm-2和1.10 V, 而电池的效率达到最大值1.91%。  相似文献   

10.
通过模板法制备钒酸铋(BiVO4)薄膜,用溶胶–凝胶法制备铁电材料铁酸铋(BiFeO3)并对BiVO4进行修饰,以半导体复合的方式提高BiVO4的光电化学性能。电化学测试结果表明,经BiFeO3修饰后, BiVO4薄膜的光电化学性能有所提高,其中经BiFeO3旋涂5次后的BiVO4薄膜具有最优的光电化学性能,光电流密度达到0.72 mA·cm–2,较未修饰样品提高了67.4%。利用外场极化调节能带弯曲可以显著地提高BiVO4/nBiFeO3铁电复合物的光电化学性能,复合物经正极化20V电压处理后的光电流密度最高为0.91mA·cm–2,比BiVO4薄膜提升了1倍以上,具有良好的光电化学性能。BiFeO3与BiVO4复合后有利于形成异质结,促进光生电子、光生空穴的产生与分离,并且外场极...  相似文献   

11.
采用两步界面组装法制备石墨烯/MnO2纳米片(GMTF)三维复合薄膜电极,研究了复合薄膜的电化学性能。结果表明,MnO2的赝电容和石墨烯的双电层电容相互协调,使得GMTF复合薄膜材料比单一的MnO2纳米片或者石墨烯材料具有更佳的电化学性能。在三电极体系中,GMTF电极的比电容在5mV/s时达156.54mF/cm2,远高于石墨烯(40.24mF/cm2)和MnO2纳米片(69.03mF/cm2)。此外,在两电极体系中,基于GMTF复合薄膜的固态超级电容器也显示出较高的面积比电容(120.49mF/cm2)和质量比电容(204.22F/g)、优良的循环性能。在功率密度为39mW/cm3时,能量密度能够达到1.735mWh/cm3。  相似文献   

12.
铜基氧化物表面的氧化物种可以增强CO2吸附,降低含氧中间体的结合能,从而提高电还原CO2的一步还原产物的产率.鉴于此,在还原过程中,Cu2O上的残留氧通过Sn2+稳定,并且残留氧的保留通过原位拉曼光谱(Cu–Oads)得到了证实.同时,原位拉曼光谱和密度泛函理论计算结果证明,由于残留氧的存在,一氧化碳中间体在SnO/Cu2O催化剂的吸附能比Cu2O催化剂明显降低.这使得其在-0.8 V (相对于可逆氢电极)的电位下获得高达97.5%的法拉第效率.铜基氧化物催化剂的氧稳定策略对设计高性能电还原CO2催化剂具有指导意义.  相似文献   

13.
通过阳极氧化法在乙二醇电解液中制备TiO2纳米管阵列, 以钼酸钠和亚硒酸为原料, 改变原料的浓度配比以及沉积电压, 电化学还原沉积MoSe2对TiO2纳米管阵列进行修饰, 以半导体复合的方式提高TiO2的光电化学性能。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)对复合物进行物相、形貌分析, 通过电化学工作站测试复合材料的线性伏安曲线、交流阻抗。结果表明, MoSe2与TiO2形成了p-n异质结, 降低了光生电子和空穴的复合以及电荷转移电阻显著降低, 使载流子浓度、光电流密度明显增大。沉积电压为-0.5 V, 2 mmol/L H2SeO3沉积30 s, 经过300 ℃热处理的MoSe2/TiO2复合材料具有优异的光电化学性能, 在0 V偏压条件下光响应电流密度为1.17 mA/cm 2, 是空白样品的3倍, 电荷转移电阻从331.6 Ω/cm 2下降到283.9 Ω/cm 2。当热处理温度为330 ℃时, MoSe2会发生团聚, 堵塞TiO2基底, 使得MoSe2/TiO2吸光能力减弱, 综合性能变差。  相似文献   

14.
MnO2作为超级电容器电极材料具有理论比电容高、成本低、环境友好等优点,但其低导电性和低利用率阻碍了其潜在应用.本研究首先在柔性碳布上电化学生长ZnO纳米棒阵列作为电极衬底,然后通过阳极电沉积法在ZnO纳米棒阵列表面外延生长了Mo和碳纳米管(CNTs)共掺杂的MnO2薄膜,可控构筑了有效、高导电性的MnO2纳米阵列电极(定义为ZnO@Mo-CNT-MnO2 NA).柔性ZnO@Mo-CNTMnO2 NA电极在100 A g-1的大电流充放电密度下比电容可达237.5 F g-1,10,000次循环后电容保留率高达86%.采用ZnO@Mo-CNTMnO2 NA电极组装成水系非对称超级电容器,弯曲状态下在132.35 mW cm-3(5mA cm-2)高功率密度下获得了1.13 mW h cm-3的高能量密度,5mA cm-2充放...  相似文献   

15.
以TiCl3为钛源,水热法制备高散射性能的锐钛矿TiO2空心微球。以商业TiO2(P25)/NaYF4∶Yb~(3+),Er3+混合材料为底层薄膜,TiO2空心微球为反射层组成双层结构光阳极薄膜,优化了太阳能电池性能。结果表明:新型结构的太阳能电池短路光电流(Jsc=16.81mA/cm2)、开路光电压(Voc=0.78V)、填充因子(FF=0.66)和光电转化效率(η=8.65%),其光电转化效率与纯P25(6.70%)光阳极和P25/NaYF4∶Yb3+,Er3+(7.35%)光阳极相比较分别提升了29%和18%。  相似文献   

16.
为了解决氧化钌(RuO2)沉积电位过高, 难以在三维微结构金属集流体上直接沉积的问题, 提出采用分步电沉积方法在微三维结构镍(Ni)集流体上制备RuO2复合膜电极, 即先在三维微结构Ni集流体上沉积聚吡咯/氧化石墨烯(PPy/GO)薄膜作为基底, 经热处理后, 在基底上二次沉积出RuO2颗粒, 最后再对RuO2复合薄膜进行二次热处理。扫描电子显微镜(SEM)观察显示, 随着热处理温度的升高, 薄膜表面多孔结构增多, 达到了提高膜电极结构孔隙分布的目的。能量分散谱(EDS)和X射线光电子能谱分析(XPS)表明, 薄膜中无定形RuO2·xH2O的存在保证了膜电极的大比容量。电化学性能测试结果表明, 经105℃处理后的膜电极电化学性能最佳, 比电容为28.5 mF/cm2, 能量密度为0.04 Wh/m2, 功率密度为14.25 W/m2。采用分步电沉积方法制备出的RuO2复合薄膜是一种良好的MEMS超级电容器电极材料。  相似文献   

17.
采用超声辅助浸渍-烘干、化学沉积与阳极氧化方法制备了由棉织物(CF)、多壁碳纳米管(MCNT)和核壳结构镍@氢氧化镍(Ni@Ni(OH)2)构成的多级结构复合电极材料(CF-MCNT/Ni@Ni(OH)2),并利用扫描电子显微镜、X射线衍射分析、电化学测试等手段对其结构与性能表征。结果表明,该电极在2 mol/L KOH溶液中0.5 mA/cm2电流密度下面积比电容可达6 300 mF/cm2(3 mA/cm2时为4 927 mF/cm2),与CF-Ni@Ni(OH)2相比具有较大提高,同时充放电循环性能也有提升。MCNT的引入有利于CF表面形成粗糙导电膜,为优化电极结构以制备具有高性能储能器件提供了借鉴。  相似文献   

18.
利用磁控溅射法在玻璃基片上沉积Sn/Cu叠层前驱体并将前驱体在H2S:N2气氛中硫化制备Cu2SnS3薄膜。制备出Cu/Sn原子比不同的薄膜样品,利用X射线衍射仪、拉曼光谱仪、扫描隧道显微镜、紫外-可见-近红外分光光度计、Hall测量系统等表征手段对薄膜进行性能表征。研究了Cu/Sn原子比对Cu2SnS3薄膜性能的影响。结果表明,制备的薄膜是(䥺Symbol`A@131)晶向择优生长的Cu2SnS3多晶薄膜,当Cu2SnS3薄膜的Cu/Sn原子比为1.91时,获得结晶性能优异、半导体性能满足太阳电池对吸收层要求的P型Cu2SnS3半导体薄膜,此薄膜在其光学吸收边具有较高的光吸收系数2.07×104 cm-1、合适的载流子浓度6.6×1018 cm-3<...  相似文献   

19.
宋治廷  蒋文成  胡洪铭  杨子泽  舒婷  李艳虹 《功能材料》2022,(12):12085-12091+12127
Fe2O3具有成本低、无毒、来源丰富、对环境友好等优点,被认为是一种极具应用前景的水系超级电容器负极材料,然而它也存在电导率低、循环稳定性和倍率性能差等缺点。采用水热法和热处理法在碳纸上制备获得了N、S共掺杂的Fe2O3。研究结果表明,N和S掺杂未改变材料的物相,但却使材料的形貌由纳米线组成的网状结构变为一层致密多孔的薄膜。其次,由于导电性的提高和反应活性位点的增多,材料表现出较高的比电容(473.2 mF/cm2,2 mA/cm2下)、优越的倍率性能(85.5%,2~20 mA/cm2)和良好的循环稳定性(96%,15 mA/cm2,10 000圈),还具有更高的电化学反应可逆性和库伦效率。最后将N、S-Fe2O3与商业活性炭组装了水系非对称型超级电容器,其体积比电容为2.1 F/cm3(1 mA/cm2下)。将两个组装的超...  相似文献   

20.
电催化CO2还原技术有望同时缓解化石燃料濒临枯竭及大气中CO2浓度不断攀升等问题.然而,对于高附加值的电催化CO2还原多碳产物的选择性提升,仍然面临巨大挑战.密度泛函理论(DFT)计算表明,Cu2O-Cu界面上Cu+和Cu0的协同耦合效应使其表面上*COCO中间体的生成能降低,同时H2O的解离自由能也降低,从而有利于电催化CO2还原高选择性生成多碳产物特别是C2H4.受DFT计算结果的启发,本文设计了一种氧化物衍生铜电极的活化策略,构建Cu2O-Cu界面,以Cu+和Cu0协同促进电催化CO2还原高效高选择性生成C2+产物.其中,Cu2O立方体被用作初始催化剂,经方波电位处理后,在Cu2O-Cu界面...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号