共查询到20条相似文献,搜索用时 0 毫秒
1.
医学上实现肝脏及肝脏肿瘤区域自动精准分割具有十分重要的临床意义,随着深度学习技术的迅速发展,深度神经网络逐步应用于医学领域,计算机辅助诊断成为研究热点。U-Net网络由于其在小样本数据集上的良好表现,在医学图像分割领域得到了广泛应用。基于此,介绍了肝脏和肝脏肿瘤分割中常用的数据集和评价指标,归纳了U-Net网络模型及围绕编解码器、跳跃连接和整体结构的改进。从单网络结构和多网络结构改进两个方面对U-Net模型在肝脏及肝脏肿瘤分割的相关应用加以论述。对相关研究工作的不足进行总结,并对未来发展予以展望。 相似文献
2.
为了对CT图像中的肺结节进行准确地分割,提出了一种基于改进的U-Net网络的肺结节分割方法。该方法通过引入密集连接,加强网络对特征的传递与利用,并且可以避免梯度消失的问题,同时采用改进的混合损失函数以缓解类不平衡问题。在LIDC-IDRI肺结节公开数据库上的实验结果表明,该方法达到的Dice相似系数值、准确率和召回率分别为84.48%、85.35%和83.81%。与其他分割网络相比,该方法能够准确地分割出肺结节区域,具有良好的分割性能。 相似文献
3.
针对U-Net分割小体积肺结节效果较差的问题,提出一种基于深度迁移学习的分割方法,利用分块式叠加微调(BSFT)策略辅助分割肺结节。首先,利用卷积神经网络学习自然图像大数据集的特征信息;然后,将所学特征迁移到进行肺结节图像小数据集分割的网络,从该网络最后一个下采样层开始逐块释放、微调训练,直到网络完成最后一层的叠加;最后,定量分析Dice相似性系数,以确定最佳分割网络。实验结果表明,BSFT在LUNA16肺结节公开数据集上的Dice值达到0.917 9,该策略的性能明显优于主流肺结节分割算法。 相似文献
4.
准确分割肺结节在临床上具有重要意义。计算机断层扫描(computer tomography,CT)技术以其成像速度快、图像分辨率高等优点广泛应用于肺结节分割及功能评价中。为了进一步对肺部CT影像中的肺结节分割方法进行探索,本文对基于CT影像的肺结节分割方法研究进行综述。1)对传统的肺结节分割方法及其优缺点进行了归纳比较;2)重点介绍了包括深度学习、深度学习与传统方法相结合在内的肺结节分割方法;3)简单介绍了肺结节分割方法的常用评价指标,并结合部分方法的指标表现展望了肺结节分割方法研究领域的未来发展趋势。传统的肺结节分割方法各有优缺点和其适用的结节类型,深度学习分割方法因普适性好等优点成为该领域的研究热点。研究者们致力于如何提高分割结果的准确度、模型的鲁棒性及方法的普适性,为了实现此目的本文总结了各类方法的优缺点。基于CT影像的肺结节分割方法研究已经取得了不小的成就,但肺结节形状各异、密度不均匀,且部分结节与血管、胸膜等解剖结构粘连,给结节分割增加了困难,结节分割效果仍有很大提升空间。精度高、速度快的深度学习分割方法将会是研究者密切关注的方法,但该类方法仍需解决数据需求量大和网络模型超参数的确定等问题。 相似文献
5.
6.
7.
乳腺超声图像具有肿瘤大小形态多变、阴影较多、边界模糊等特点,经典U-Net的乳腺肿瘤分割结果与标注图像出入较大。对此,提出改进网络MultiMixU-Net。该网络在U-Net结构中引入MultiMix block以及Respath。MultiMix block通过空洞卷积通路提高网络区分目标以及背景的能力,并通过级联该通路中各卷积层输出,融合普通卷积通路的输出来提取多尺度特征信息。Respath的改进部署使网络中收缩路径与扩张路径之间对应特征信息的传递更加有效。该改进网络在公开的超声乳腺肿瘤分割数据集上进行了测试,实验表明,MultiMixU-Net分割结果优于其他网络且参数量较少。相较于U-Net,所提网络分割结果在所有评价指标上均有提升,其中IoU、DSC分别提升0.154 1、0.127 3。 相似文献
8.
近年来随着深度学习技术的快速发展,卷积神经网络(CNN)成为语义分割的重要支撑框架,被广泛运用于多种目标检测与分割的任务当中。在医学图像分割任务中,U-Net网络以其优异的分割性能、可拓展性的网络结构等特点成为该领域研究的热点。如今有众多学者从网络的结构等方面对U-Net进行改进以优化网络性能、提升分割准确度。研究通过对相关文献的分析,首先介绍了基于U-Net的经典改进模型;然后阐述了六大U-Net改进机制:注意力机制、inception模块、残差结构、空洞机制、密集连接结构以及集成网络结构;随后介绍了医学图像分割常用评价指标和非结构化改进方案,这些非结构化改进方法包括数据增强、优化器、激活函数和损失函数四个方面;之后列举并分析了在肺结节、视网膜血管、皮肤病和颅内肿瘤新冠肺炎四大医学图像分割领域的改进模型;最后对U-Net网络的未来发展进行展望,为相关研究提供思路。 相似文献
9.
10.
由于肺部CT图像的特征信息复杂程度高,经典U型卷积网络对肺结节分割存在准确率较低和误分割等问题.针对这一问题,提出一种改进的U型卷积网络模型.该模型将U-Net网络和DenseNet网络融合,将解码器浅层特征连接至深层特征来增强特征的复用性.通过U-Net网络与卷积条件随机场(ConvCRF)的端到端结合训练来增强边缘特征,解决了边界模糊的问题.提出一种改进的focal loss损失函数,该函数提高了结节所占的权重,解决了正负样本不平衡的问题.在LUNA16数据集中作对比实验验证了模型的性能,分割精准度达到0.9374,敏感度为0.941,该结果证明了改进模型在肺结节分割中更优. 相似文献
11.
诊断直肠癌时,如果能够从CT图像中自动准确分割出直肠肿瘤区域,将有助于医生进行更准确和快速的诊断。针对直肠肿瘤分割问题,提出基于U-Net改进模型的直肠肿瘤自动分割方法。首先在U-Net模型的每级编码器中嵌入子编码模块提升模型特征提取能力;其次通过对比不同优化器的优化性能,获得最适合的优化器用于训练模型;最后对训练集进行数据扩充使模型得到更充分的训练,从而提高分割性能。与U-Net、Y-Net和FocusNetAlpha三种网络模型进行的对比实验表明:所提改进模型得到的分割区域与真实肿瘤区域更接近,对小目标的分割性能更突出,该模型的查准率、查全率和Dice系数三个评价指标都优于对比的模型,能有效分割直肠肿瘤区域。 相似文献
12.
目的 为制定放疗计划并评估放疗效果,精确的PET(positron emission tomography)肿瘤分割在临床中至关重要。由于PET图像存在低信噪比和有限的空间分辨率等特点,为此提出一种应用预训练编码器的深度卷积U-Net自动肿瘤分割方法。方法 模型的编码器部分用ImageNet上预训练的VGG19编码器代替;引入基于Jaccard距离的损失函数满足对样本重新加权的需要;引入了DropBlock取代传统的正则化方法,有效避免过拟合。结果 PET数据库共包含1 309幅图像,专业的放射科医师提供了肿瘤的掩模、肿瘤的轮廓和高斯平滑后的轮廓作为模型的金标准。实验结果表明,本文方法对PET图像中的肿瘤分割具有较高的性能。Dice系数、Hausdorff距离、Jaccard指数、灵敏度和正预测值分别为0.862、1.735、0.769、0.894和0.899。最后,给出基于分割结果的3维可视化,与金标准的3维可视化相对比,本文方法分割结果可以达到金标准的88.5%,这使得在PET图像中准确地自动识别和连续测量肿瘤体积成为可能。结论 本文提出的肿瘤分割方法有助于实现更准确、稳定、快速的肿瘤分割。 相似文献
13.
病灶精确分割对患者病情评估和治疗方案制定有重要意义,由于医学图像中病灶与周围组织的对比度低,同一疾病病灶边缘和形状存在很大差异,从而增加了分割难度。U-Net是近些年深度学习研究中的热点,为医生提供了一致性的量化病灶方法,一定程度上提高了分割性能,广泛应用于医学图像语义分割领域。本文对U-Net网络进行全面综述。阐述U-Net网络的基本结构和工作原理;从编码器个数、多个U-Net级联、与U-Net结合的其他模型以及3D U-Net等方面对U-Net网络模型的改进进行总结;从卷积操作、下采样操作、上采样操作、跳跃连接、模型优化策略和数据增强等方面对U-Net网络结构改进进行总结;从残差思想、密集思想、注意力机制和多机制组合等方面对U-Net的改进机制进行总结;对U-Net网络未来的发展方向进行展望。本文对U-Net网络的原理、结构和模型进行详细总结,对U-Net网络的发展具有一定积极意义。 相似文献
14.
深度卷积神经网络在医学图像分割领域运用广泛,目前的网络改进普遍是引入多尺度融合结构,增加了模型的复杂度,在提升精度的同时降低了训练效率。针对上述问题,提出一种新型的WU-Net肺结节图像分割方法。该方法对U-Net网络进行改进,在原下采样编码通路引入改进的残余连接模块,同时利用新提出的dep模块改进的信息通路完成特征提取和特征融合。实验利用LUNA16的数据集对WU-Net和其他模型进行训练和验证,在以结节为尺度的实验中,Dice系数和交并比分别能达到96.72%、91.78%;在引入10%的负样本后,F;值达到了92.41%,相比UNet3+提高了1.23%;在以肺实质为尺度的实验中,Dice系数和交并比分别达到了83.33%、66.79%,相比RU-Net分别提升了1.35%、2.53%。相比其他模型,WU-Net模型的分割速度最快,比U-Net提升了39.6%。结果显示,WU-Net提升肺结节分割效果的同时加快了模型的训练速度。 相似文献
15.
目前,已知基于深度学习的云分割方法通常采用传统U型编解码结构的网络,该结构虽能有效利用编码端的空间位置信息,但整个网络参数过多、计算量大,同时其编码端仅采用简单卷积与下采样操作,无法有效获取高质量的上下文语义特征信息.针对上述情况提出一种新型的轻量级U-Net模型用于云分割问题.整个模型采用跳跃连接编码端浅层和中层信息的新U型编解码结构,并在其编码端嵌入由分组卷积与注意力机制组成的优化模块,同时构建上下语义融合连接,连接编码端与解码端相应的上下层.实验结果表明,在公共基准数据集38-Cloud上,该模型相比其他主流云分割网络在分割精度与模型参数等方面均能取得更优异的结果. 相似文献
16.
17.
脑卒中病灶自动分割可以为临床决策过程提供有价值的支持,而由于病灶大小、形状和位置的多样性,这项任务具有一定的挑战性.以往的研究未能很好地捕获有助于处理这种多样性的全局上下文信息.针对小样本情境下的缺血性脑卒中病灶分割这一问题,提出了在传统U-Net的基础上融合了残差模块和non-local块的端到端神经网络,用于从多模... 相似文献
18.
针对新生儿局灶性脑白质损伤的病灶区域小而样本差异大导致的检测与分割病灶较为困难的问题,提出一种精细化深度残差U-Net模型,以对病灶进行精细的语义分割。首先,把核磁共振(MRI)图像裁剪成较小的图像块;其次,利用残差U-Net提取出每个图像块不同层次的深度特征;然后,将特征进行融合并输出每个图像块的病灶分布概率图;最后,由全连接条件随机场对拼接后的概率图进行优化得到最终的分割结果。在某合作医院提供的数据集上的评估结果显示,在仅使用T1序列单模态数据的情况下,该模型在分割新生儿局灶性脑白质损伤时,病灶边缘的分割精度得到提高,且模型抗干扰能力较好。该模型的Dice相似性系数达到了62.51%,敏感度达到69.76%,特异性达到99.96%,修正的Hausdorff距离降低到33.67。 相似文献
19.
视网膜血管分割是医学图像分割中常见的一项任务, 视网膜血管图像有着分割目标小而多的特点, 过去的网络在分割中可以较好地提取粗血管, 但是很容易忽略细血管, 而这部分细血管的提取在一定程度上影响网络的性能, 甚至是诊断的结果. 因此, 为了达到在保证准确提取粗血管的前提下, 提取到更多更连续的细血管的目标, 本文使用对称编解码网络作为基础网络, 使用一种新的卷积模块DR-Conv, 旨在防止过拟合的同时提高网络的学习能力. 同时, 针对最大池化层造成的信息损失问题, 考虑使用小波变换进行图像分解并使用逆小波变换对图像进行恢复, 利用混合损失函数结合不同损失函数的特性以弥补单个损失函数优化能力不足的问题. 为了评估网络的性能, 在3个公共视网膜血管数据集上分别对网络进行了测试, 并与最新方法进行了比较, 实验结果表明本文网络拥有更优的性能. 相似文献
20.
为解决现有肺结节检测模型精度低、漏诊率和误诊率高等问题,提出融合残差模块的肺结节检测算法.候选结节检测阶段,提出残差U-Net (residual U-Net,RU Net)分割网络,将改进的残差网络(residual network,ResNet)模块与UNet结构融合,提升模型特征提取能力;加入改进的损失函数解决数... 相似文献