首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, ytterbium and erbium oxides are used as doping materials for barium titanate (BaTiO3) materials. The amphoteric behavior of these rare-earth ions leads to the increase of dielectric permittivity and decrease of dielectric losses. BaTiO3 ceramics doped with 0.01–0.5 wt% of Yb2O3 and Er2O3 were prepared by conventional solid-state procedure and sintered at 1320°C for 4 h. In BaTiO3 doped with a low content of rare-earth ions (0.01 wt%) the grain size ranged between 10 and 25 μm. With the higher dopant concentration of 0.5 wt%, the abnormal grain growth is inhibited and the grain size ranged between 2 and 10 μm. The measurements of capacitance and dielectric losses as a function of frequency and temperature have been carried out in order to correlate the microstructure and dielectric properties of doped BaTiO3 ceramics. The temperature dependence of the dielectric constant as a function of dopant amount has been investigated.  相似文献   

2.
Measurements of Nb diffusion into large- and small-grained BaTiO3 disks show a high ratio of grain boundary to bulk diffusivity. Well defined X-ray diffraction lines are found in Nb-doped BaTiO3 only when significant grain growth occurs during sintering. When grain growth of a 0.65 μm grain size powder is limited at ∼1 μm, excess line broadening results. This is attributed to the simultaneous presence of Nb-free and Nb-rich regions. Because of its low bulk diffusivity little Nb penetrates into the original BaTiO3 grain cores, and a solid solution forms only in the regions of recrystallization. When grain growth is limited, the "sintering reaction" results in a non-homogeneous system; when appreciable grain growth occurs, most of the original grain cores are eliminated and an essentially uniform system is obtained.  相似文献   

3.
Grain growth in a high-purity ZnO and for the same ZnO with Bi2O3 additions from 0.5 to 4 wt% was studied for sintering from 900° to 1400°C in air. The results are discussed and compared with previous studies in terms of the phenomenological kinetic grain growth expression: G n— G n0= K 0 t exp(— Q/RT ). For the pure ZnO, the grain growth exponent or n value was observed to be 3 while the apparent activation energy was 224 ± 16 kJ/mol. These parameters substantiate the Gupta and Coble conclusion of a Zn2+ lattice diffusion mechanism. Additions of Bi2O3 to promote liquidphase sintering increased the ZnO grain size and the grain growth exponent to about 5, but reduced the apparent activation energy to about 150 kJ/mol, independent of Bi2O3 content. The preexponential term K 0 was also independent of Bi2O3 content. It is concluded that the grain growth of ZnO in liquid-phase-sintered ZnO-Bi2O3 ceramics is controlled by the phase boundary reaction of the solid ZnO grains and the Bi2O3-rich liquid phase.  相似文献   

4.
The grain growth of donor-doped BaTiO3 prepared from BaTiO3 powders with different initial specific surface areas was studied. Results show that a higher initial surface area and, consequently, a smaller critical grain size at the phase boundary drastically increase the critical amount of donor dopant, causing the grain size anomaly during sintering.  相似文献   

5.
The release of oxygen during the sintering of Sb2O3-doped BaTiO3 ceramics containing excess TiO2 was measured using a mass spectrometer. The amount of oxygen released is proportional to the dopant concentration in the product phase. The evolution of oxygen during sintering was attributed to dissolution of the oxidized form of doped BaTiO3 in the reacting mixture and simultaneous re-crystallization of the- reduced form.  相似文献   

6.
We investigated the preparation of bulk dense nanocrystalline BaTiO3 and Ni–Cu–Zn ferrite ceramics using an unconventional two-step sintering strategy, which offers the advantage of not having grain growth while increasing density from about 75% to above 96%. Using nanosized powders, dense ferrite ceramics with a grain size of 200 nm and BaTiO3 with a grain size of 35 nm were obtained by two-step sintering. Like the previous studies on Y2O3, the different kinetics between densification diffusion and grain boundary network mobility leaves a kinetic window that can be utilized in the second-step sintering. Evidence indicates that low symmetry, ferroelectric structures still exist in nanograin BaTiO3 ceramics, and that saturation magnetization is the same in nanograin and coarse grain ferrite ceramics.  相似文献   

7.
Dielectric ceramics of Zr0.8Sn0.2TiO4 containing La2O3 and ZnO as sintering aids were prepared and investigated for microstructure and microwave dielectric properties. Low-level doping with La2O3 and ZnO (up to 0.30 wt%) is good for densification and dielectric properties. These additives do not affect the dielectric constant and the temperature coefficient. Dielectric losses increase significantly at additive levels higher than 0.15 wt%. The combined additives La2O3 and ZnO act as grain growth enhancers. With 0.15 wt% additives, a ceramic having a dielectric constant, a quality factor, and a temperature coefficient of frequency at 4.2 GHz of 37.6, 12 800, and –2.9 ppm/°C, respectively, was obtained. The quality factor was considerably improved by prolonged sintering.  相似文献   

8.
Lattice constants, grain size, electrical conductivity, and luminescence were measured for sintered BaTiO3 ceramics doped with 0 to 1.2 at.% rare-earth ions. BaTiO3 doped with low levels of rare-earth ions contains grains 10 μm in size and has lattice constants nearly equal to those of undoped ceramics. In this case, rare-earth ions occupy Ba2+ sites and yield donors. When grain growth is inhibited by high doping levels or by insufficient sintering, the lattice constants change, the rare-earth ions occupy both Ba2+ and Ti4+ sites, and, consequently, BaTiO3 becomes insulative because of charge compensation.  相似文献   

9.
Grain growth of ZnO during the liquid-phase sintering of binary ZnO–Bi2O3 ceramics has been studied for Bi2O3 contents from 3 to 12 wt% and sintering from 900° to 1400°C. The results are considered in combination with previously published studies of ZnO grain growth in the ZnO–Bi2O3 system. For the Bi2O3 contents of the present study, the rate of ZnO grain growth is found to decrease with increasing Bi2O3. Activation analysis, when combined with the results of similar analyses of the previous studies, reveals a change in the rate-controlling mechanism for ZnO grain growth. Following a low-Bi2O3-content region of nearly constant activation energy values of about 150 kJ/mol, further Bi2O3 additions cause an increase of the activation energy to about 270 kJ/mol. consistent with accepted models of liquid-phase sintering, it is concluded that the rate-controlling mechanism of ZnO grain growth during liquid-phase sintering in the presence of Bi2O3 changes from one of a phase-boundary reaction at low Bi2O3 levels to one of diffusion through the liquid phase at about the 5 to 6 wt% Bi2O3 level and above.  相似文献   

10.
Core-Shell Structure of Acceptor-Rich, Coarse Barium Titanate Grains   总被引:3,自引:0,他引:3  
Heavily doped barium titanate (BaTiO3) powders, one with a donor-rich and the other with an acceptor-rich composition, were prepared. After sintering, the donor-rich specimen exhibited a fine-grained microstructure but significant grain growth occurred in the acceptor-rich specimen. A stable dielectric behavior was observed only in the donor-rich fine-grained specimen over the temperature range studied. However, in both specimens, an undoped core region several hundred nanometers in size was detected. The core-shell structure appeared to be maintained in BaTiO3 under the conventional sintering conditions.  相似文献   

11.
Formation of BaTiO3-SrTiO3 solid solution during sintering of powder mixtures is characterized by preferential diffusion of Ba2+ ions. As a consequence, several nonequilibrium phases are temporarily formed; they were identified by X-ray and microprobe analysis. Eutectic liquid appears below 1300°C, which may explain exaggerated grain growth during sintering of BaTiO3-SrTiO3 mixtures. Disturbance in neck growth and Kirkendall-type porosity hamper densification in the heterogeneous system as compared with the pure titanates.  相似文献   

12.
Additions of Bi2O3 were used to promote grain growth and to increase magnetic permeability during sintering of MnZn ferrites. The results showed that small additions of Bi2O3 of <0.05 wt% remarkably increase the permeability of MnZn ferrites. On the other hand, addition of 0.05 wt% Bi2O3 induced the formation of a microstructure composed of giant grains with trapped pores embedded in a normal microstructure. The permeability of these samples showed a pronounced secondary maximum in permeability. At still higher Bi2O3 concentrations, above 0.2 wt%, the grain growth was retarded and a normal microstructure appeared; however, the magnetic permeability was strongly reduced.  相似文献   

13.
Chemically induced grain-boundary migration and its effects on the interface and dielectric properties of semiconducting SrTiO3 have been investigated. Strontium titanate specimens that had been doped with 0.2 mol% of Nb2O5 were sintered in 5H2/95N2. The sintered specimens were diffusion annealed at 1400°C in 5H2/95N2 with BaTiO3 or 0.5BaTiO3-0.5CaTiO3 (mole fraction) packing powder. The grain boundaries of the annealed specimens were oxidized in air. In the case of BaTiO3 packing, grain-boundary migration occurred with the diffusion of BaTiO3 along the grain boundary. The effective dielectric constant of the specimen decreased gradually as the temperature increased but showed two peaks, possibly because of barium enrichment at the grain boundary and an oxidized Sr(Ba)TiO3 layer. In the case of 0.5BaTiO3-0.5CaTiO3 packing, although barium and calcium were present at the grain boundary of the specimen, no boundary migration occurred, as in a previous investigation. With the diffusion of barium and calcium, the resistivity of the specimen increased and the variation of the effective dielectric constant with temperature was much reduced, in comparison to those without solute diffusion. These enhanced properties were attributed to the solute enrichment and the formation of a thin diffusional Sr(Ba,Ca)TiO3 layer at the grain boundary.  相似文献   

14.
The effect of grain boundary structure, either rough or faceted, on diffusion-induced grain boundary migration (DIGM) has been investigated in BaTiO3. SrTiO3 particles were scattered on the polished surfaces of two kinds of BaTiO3 samples with faceted and rough boundaries and annealed in air for the samples with faceted boundaries and in H2 for those with rough boundaries. In the BaTiO3 samples with rough boundaries, an appreciable grain boundary migration occurred. In contrast, grain-boundary migration hardly occurred in the BaTiO3 samples with faceted boundaries. The migration suppression observed in the sample with faceted boundaries was attributed to a low boundary mobility. The present experimental results show that DIGM is strongly affected by the boundary structure and can be suppressed by structural transition of boundaries from rough to faceted.  相似文献   

15.
Grain growth of ZnO during liquid-phase sintering of a ZnO-6 wt% Bi2O3 ceramic was investigated for A12O3 additions from 0.10 to 0.80 wt%. Sintering in air for 0.5 to 4 h at 900° to 1400°C was studied. The AI2O3 reacted with the ZnO to form ZnAl2O4 spinel, which reduced the rate of ZnO grain growth. The ZnO grain-growth exponent was determined to be 4 and the activation energy for ZnO grain growth was estimated to be 400 kJ/mol. These values were compared with the activation parameters for ZnO grain growth in other ceramic systems. It was confirmed that the reduced ZnO grain growth was a result of ZnAl2O4 spinel particles pinning the ZnO grain boundaries and reducing their mobility, which explained the grain-growth exponent of 4. It was concluded that the 400 kJ/mol activation energy was related to the transport of the ZnAl2O4 spinel particles, most probably controlled by the diffusion of O2- in the ZnAl2O4 spinel structure.  相似文献   

16.
Silver and its alloys frequently are used as electrode material for BaTiO3-based dielectrics. In the present study, a small amount of fine silver particles have been intimately mixed with BaTiO3 powder. The sintering and grain-growth behavior of the silver-doped BaTiO3 in air are investigated. The solubility of silver in BaTiO3, as revealed by lattice-parameter measurement, electrical measurement, and electron probe microanalysis, is <300 ppm. The densification of BaTiO3 is slowed slightly by the addition of silver inclusions. However, the presence of a small amount (<0.3 wt%) of silver increases the amount and size of abnormal grains. When the silver content is >0.3 wt%, the grain growth of BaTiO3 then is prohibited by the silver inclusions.  相似文献   

17.
Grain growth and semiconductivity of donor-doped BaTiO3ceramics with an excess of BaO and additions of SiO2or B2O3were studied. The microstructures and electrical measurements on sintered samples revealed that their electrical properties are related to the microstructure development of the sintered samples. Samples heated with an excess of BaO developed a normal microstructure during sintering, as a consequence of normal grain growth (NGG), and were yellow and insulating. In contrast, samples with an excess of BaO and an addition of SiO2or B2O3exhibited anomalous grain growth (AGG) and were dark blue and semiconducting after sintering. When some BaTiO3seed grains were embedded in a sample of donor-doped BaTiO3with an excess of BaO (without SiO2or B2O3), AGG was observed, i.e., some seed grains grew into large grains and were blue and semiconducting. An explanation is given for why AGG is responsible for the oxygen release and the formation of semiconducting grains in donor-doped BaTiO3and not NGG.  相似文献   

18.
A model is proposed to relate segregation of dopants with the development of fine ceramic microstructures and electrical properties in polycrystalline donor-doped BaTiO3. As the average dopant concentration is increased, the dopant concentration at the grain boundary increases compared with the bulk. This has two important effects: (1) dopant incorporation at the grain boundary shifts from electronic to vacancy compensation and the formation of high-resistive layers, and (2) grain-boundary mobility is impeded and grain growth retarded with increased dopant additions. Thus, for high dopant concentrations, donor-doped BaTiO3 becomes insulating. The model discusses in detail the nonequilibrium heterogeneous defect chemistry as a function of thermal-processing and accounts for barrier layer phenomena.  相似文献   

19.
Al2O3/5-vol%-SiC nanocomposites have been fabricated by using pressureless sintering with MgO and/or Y2O3 sintering aids and post-hot isostatic pressing (HIPing), which circumvents the limitations of hot pressing. Al2O3/SiC nanocomposites that have been doped with 0.1 wt% MgO and 0.1 wt% MgO + 0.1 wt% Y2O3 show an increased sintering density and a homogeneous microstructure, as well as a high fracture strength (1 GPa) after HIPing. In contrast, using Y2O3 as a dopant has a negative impact on the microstructure and the fracture strength. The results suggest that MgO, as a sintering additive, has a key role in improving the densification and controlling the microstructure of Al2O3/SiC nanocomposites.  相似文献   

20.
The grain growth of donor-doped BaTiO3 at different oxygen partial pressures was studied. Results showed that the oxygen pressure had a pronounced influence on the grain growth and related effects. A model for the grain size anomaly during sintering of donor-doped BaTiO3 in the presence of a TiO2-rich liquid phase is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号