首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NMDA type of ligand-gated glutamate receptor requires the presence of both glutamate and glycine for gating. These receptors are hetero-oligomers of NR1 and NR2 subunits. Previously it was thought that the binding sites for glycine and glutamate were formed by residues on the NR1 subunit. Indeed, it has been shown that the effects of glycine are controlled by residues on the NR1 subunit, and a "Venus flytrap" model for the glycine binding site has been suggested by analogy with bacterial periplasmic amino acid binding proteins. By analysis of 10 mutant NMDA receptors, we now show that residues on the NR2A subunit control glutamate potency in recombinant NR1/NR2A receptors, without affecting glycine potency. Furthermore, we provide evidence that, at least for some mutated residues, the reduced potency of glutamate cannot be explained by alteration of gating but has to be caused primarily by impairing the binding of the agonist to the resting state of the receptor. One NR2A mutant, NR2A(T671A), had an EC50 for glutamate 1000-fold greater than wild type and a 255-fold reduced affinity for APV, yet it had single-channel openings very similar to those of wild type. Therefore we propose that the glutamate binding site is located on NR2 subunits and (taking our data together with previous work) is not on the NR1 subunit. Our data further imply that each NMDA receptor subunit possesses a binding site for an agonist (glutamate or glycine).  相似文献   

2.
Homozygotic spasmodic (spd/spd) mice suffer from a motor disorder resembling poisoning by the glycine receptor antagonist strychnine. Here, a point mutation was identified in the glycine receptor alpha 1 subunit gene of the spasmodic mouse which predicts an alanine-to-serine exchange at position 52 of the mature polypeptide. Upon expression in Xenopus laevis oocytes, alpha 1A52S receptor channels displayed reduced responses to glycine, beta-alanine and taurine when compared to recombinant alpha 1 glycine receptors. As glycine receptor content in spinal cord and native molecular weight appeared unaltered, this suggests that the spasmodic phenotype results from an altered neurotransmitter sensitivity of the mutant alpha 1A52S subunit.  相似文献   

3.
The inhibitory glycine receptor is a ligand-gated ion-channel protein existing in different homo- and heterooligomeric isoforms. Here we show that the chloride channel of the recombinant alpha 1-subunit homooligomeric glycine receptor is efficiently blocked by cyanotriphenylborate (CTB) with a concentration effecting 50% inhibition (IC50) of 1.3 microM in the presence of 50 microM glycine. The antagonistic effect of CTB is noncompetitive, use dependent, and more pronounced at positive membrane potentials, suggesting open-channel block. In contrast to alpha 1-subunit receptors, alpha 2-subunit homooligomers are resistant to CTB (IC50 > 20 microM). By exchanging the channel-lining transmembrane segment M2 of the alpha 1 polypeptide by that of the alpha 2 polypeptide, we could transfer this resistance to alpha 1 channels, indicating that a single glycine residue at position 254 of the alpha 1 subunit is critical for CTB sensitivity. The blocker did not affect the cation-selective channel of the nicotinic acetylcholine receptor. Thus, CTB may prove useful as a tool to probe the subunit structure of native glycine receptors in mammalian neurons.  相似文献   

4.
Volatile anaesthetics have historically been considered to act in a nonspecific manner on the central nervous system. More recent studies, however, have revealed that the receptors for inhibitory neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine are sensitive to clinically relevant concentrations of inhaled anaesthetics. The function of GABA(A) and glycine receptors is enhanced by a number of anaesthetics and alcohols, whereas activity of the related GABA rho1 receptor is reduced. We have used this difference in pharmacology to investigate the molecular basis for modulation of these receptors by anaesthetics and alcohols. By using chimaeric receptor constructs, we have identified a region of 45 amino-acid residues that is both necessary and sufficient for the enhancement of receptor function. Within this region, two specific amino-acid residues in transmembrane domains 2 and 3 are critical for allosteric modulation of both GABA(A) and glycine receptors by alcohols and two volatile anaesthetics. These observations support the idea that anaesthetics exert a specific effect on these ion-channel proteins, and allow for the future testing of specific hypotheses of the action of anaesthetics.  相似文献   

5.
Glycine is an essential co-agonist of the excitatory N-methyl-D-aspartate (NMDA) receptor, a subtype of the ionotropic glutamate receptor family. The glycine binding site of this hetero-oligomeric ion channel protein is formed by two distinct extracellular regions, S1 and S2, of the NR1 subunit, whereas the homologous domains of the NR2 subunit mediate glutamate binding. Here, segments S1 and S2 of the NR1 polypeptide were fused via a linker peptide followed by N- and C-terminally tagging with Flag and His6 epitopes, respectively. Infection of High Five insect cells with a recombinant baculovirus containing this glycine binding site construct resulted in efficient secretion of a soluble fusion protein of about 53 kDa. After affinity purification to near-homogeneity, the fusion protein bound the competitive glycine site antagonist [3H]MDL105,519 with high affinity (Kd = 5.22 +/- 0. 13 nM) similar to that determined with rat brain membrane fractions. This high affinity binding could be competed by the glycine site antagonist 7-chlorokynurenic acid as well as the agonists glycine and D-serine but not by L-glutamate. This indicates that the S1 and S2 domains of the NR1 subunit are sufficient for the formation of a glycine binding site that displays pharmacological properties similar to those of the NMDA receptor in vivo.  相似文献   

6.
Two subunits from Xenopus, XenNR1G and the "short" subunit XenU1, have previously been coexpressed to form a unitary (NMDA/non-NMDA type) glutamate receptor. We now show that an antibody to XenNR1G or an antibody to XenU1 precipitates the binding sites of both XenNR1G and XenU1, with the recombinant subunits or with solubilised Xenopus brain membranes, i.e., the combination occurs in vivo. The expressed XenU1 subunits are in the cell membrane and oriented correctly. XenU1 binds not only kainate with high affinity (K(D) 1.2 nM at 25 degrees C), but also the glycine site antagonist 5,7-dichlorokynurenic acid (DCKA). DCKA, GTP, or GTPgammaS displaces competitively all of the bound [3H]kainate, but glycine has no effect. The results suggest that a common binding site for kainate, DCKA, and GTP can exist on XenU1. In the XenNR1G/XenU1 complex, the kainate affinity is lowered eightfold, whereas the DCKA affinity is considerably increased (K(D) 147 nM). Only 18% of the binding to the complex has the properties of the NMDA receptor glycine site, the rest being due to switching of the high-affinity kainate site of XenU1 (low-affinity DCKA) to a high-affinity DCKA (low-affinity kainate) conformation. Surprisingly, a mammalian NR2 subunit can also combine with XenU1, and this introduces similar reciprocal changes in the binding of kainate and DCKA. The combined evidence suggests a common basic mode of agonist site formation in different subunit types of the ionotropic glutamate receptors.  相似文献   

7.
A cDNA encoding a 100-kDa subunit (XenNR1) of the N-methyl-D-aspartate (NMDA) glutamate receptor type has been cloned from Xenopus central nervous system. When XenNR1 is coexpressed in a mammalian cell line with a recently cloned 51-kDa non-NMDA receptor subunit (XenU1), also from Xenopus, it forms a functional unitary receptor exhibiting the pharmacological properties characteristic of both NMDA and non-NMDA receptors. Firstly, XenU1 can replace NR2 subunits, in complementing XenNR1 to introduce the ligand binding properties of a complete NMDA receptor. Second, responses to both NMDA and non-NMDA receptor agonists and antagonists were obtained in patch-clamp recordings from the cotransfected cells, but no significant responses were recorded when the cells were singly transfected. Third, from solubilized cell membranes from the cotransfected cells, an antibody to the NR1 subunit coprecipitated the binding sites of the non-NMDA receptor subunit. The unitary glutamate receptor has a unique set of properties that denote intersubunit interaction, including a glycine requirement for the responses to non-NMDA as well as to NMDA receptor agonists and voltage-dependent block by Mg2+ of the non-NMDA agonist responses.  相似文献   

8.
Septal cholinergic neurons are known to play an important role in cognitive processes including learning and memory through afferent innervation of the hippocampal formation and cerebral cortex. The septum contains not only cholinergic neurons but also various types of neurons including GABA (gamma-aminobutyric acid)-ergic neurons. Although synaptic transmission in the septum is mediated primarily by the activation of excitatory and inhibitory amino-acid receptors, it is possible that a distinct phenotype of neuron is endowed with a different type for each of the amino-acid receptors and thus they play different roles from each other, since it has been demonstrated within the septum that there is a regional distribution of various types of amino-acid receptor subunits, their expression as different combinations within a specific cell may produce receptor channels with disparate functional properties. As a first step towards knowing the various functions of septal cholinergic neurons, we characterized the functional properties of glutamate, GABA (type A; GABAA) and glycine receptor channels on cultured rat septal neurons which were histologically identified to be cholinergic. These were similar to those of receptor channels on other types of neurons, except for the actions of some neuromodulators. The septal N-methyl-D-aspartate receptor channel was distinct in being less sensitive to Mg2+ and in a voltage-dependent action of Zn2+. The septal GABAA receptor channel exhibited a lanthanide site whose activation resulted in a positive allosteric interaction with a binding site of pentobarbital. The septal glycine receptor channel was only positively modulated by Zn2+; this action of Zn2+ was not accompanied by an inhibitory effect. Our data suggest that the amino-acid receptors on septal cholinergic neurons may play a distinct role compared to other types of neurons; this difference depends on the actions of neuromodulators and metal cations. It would be interesting to compare these effects recorded in tissue culture to those observed with septal cholinergic neurons in slice preparations.  相似文献   

9.
High-affinity NMDA receptor glycine recognition site antagonists protect brain tissue from ischemic damage. The neuroprotective effect of 5-nitro-6,7-dichloro-2,3-quinoxalinedione (ACEA 1021), a selective NMDA receptor antagonist with nanomolar affinity for the glycine binding site, was examined in rat cortical mixed neuronal/glial cultures. ACEA 1021 alone did not alter spontaneous lactate dehydrogenase (LDH) release. Treatment with ACEA 1021 (0.1-10 microM) before 500 microM glutamate, 30 microM NMDA, or 300 microM kainate exposure was found to reduce LDH release in a concentration-dependent fashion. These effects were altered by adding glycine to the medium. Glycine (1 mM) partially reversed the effect of ACEA 1021 on kainate cytotoxicity. Glycine (100 microM-1 mM) completely blocked the effects of ACEA 1021 on glutamate and NMDA cytotoxicity. The glycine concentration that produced a half-maximal potentiation of excitotoxin-induced LDH release in the presence of 1.0 microM ACEA 1021 was similar for glutamate and NMDA (18 +/- 3 and 29 +/- 9 microM, respectively). ACEA 1021 also reduced kainate toxicity in cultures treated with MK-801. The effects of glycine and ACEA 1021 on glutamate-induced LDH release were consistent with a model of simple competitive interaction for the strychnine-insensitive NMDA receptor glycine recognition site, although nonspecific effects at the kainate receptor may be of lesser importance.  相似文献   

10.
The inhibitory glycine receptor (GlyR) is a pentameric receptor comprised of alpha and beta subunits, of which the beta subunit has not been characterised in humans. A 2106 bp cDNA, isolated from a human hippocampal cDNA library, contained an open reading frame of 497 amino acids which encodes the beta subunit of the human GlyR. The mature human GlyR beta polypeptide displays 99% amino acid identity with the rat GlyR beta subunit and 48% identity with the human GlyR alpha 1 subunit. Neither [3H]strychnine binding nor glycine-gated currents were detected when the human GlyR beta subunit cDNA was expressed in the human embryonic kidney 293 cell line. However, co-expression of the beta subunit cDNA with the alpha 1 subunit cDNA resulted in expression of functional GlyRs which showed a 4-fold reduction in the EC50 values when compared to alpha 1 homomeric GlyRs. Glycine-gated currents of alpha 1/beta GlyRs were 17-fold less sensitive than homomeric alpha 1 GlyRs to the antagonists picrotoxin, picrotoxinin and picrotin, providing clear evidence that heteromeric alpha 1/beta GlyRs were expressed. The beta subunit appears to play a structural rather than ligand binding role in GlyR function. Fluorescence in situ hybridisation was used to localise the gene encoding the human GlyR beta subunit (GLRB) to chromosome 4q32, a position syntenic with mouse chromosome 3. In situ hybridisation using the human GlyR beta subunit cDNA showed that the murine GlyR beta subunit gene (Glrb) maps to the spastic (spa) locus on mouse chromosome 3 at bands E3-F1. This is consistent with the recent finding that a mutation in the murine GlyR beta subunit causes the spa phenotype. It also raises the possibility that mutations in the human beta subunit gene may cause inherited disorders of the startle response.  相似文献   

11.
Missense mutations as well as a null allele of the human glycine receptor alpha1 subunit gene GLRA1 result in the neurological disorder hyperekplexia [startle disease, stiff baby syndrome, Mendelian Inheritance in Man (MIM) #149400]. In a pedigree showing dominant transmission of hyperekplexia, we identified a novel point mutation C1128A of GLRA1. This mutation encodes an amino acid substitution (P250T) in the cytoplasmic loop linking transmembrane regions M1 and M2 of the mature alpha1 polypeptide. After recombinant expression, homomeric alpha1(P250T) subunit channels showed a strong reduction of maximum whole-cell chloride currents and an altered desensitization, consistent with a prolonged recovery from desensitization. Apparent glycine binding was less affected, yielding an approximately fivefold increase in Ki values. Topological analysis predicts that the substitution of proline 250 leads to the loss of an angular polypeptide structure, thereby destabilizing open channel conformations. Thus, the novel GLRA1 mutant allele P250T defines an intracellular determinant of glycine receptor channel gating.  相似文献   

12.
Binding of the coagonist glycine to the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors is potently antagonized by 2-carboxy-4-hydroxyquinolines. We show that closely related derivatives, 4-hydroxy-quinolines and 4-hydroxquinoline-3-carboxylic acids, antagonize the agonist response of the recombinant inhibitory glycine receptor (GlyR). In Xenopus laevis oocytes expressing the GlyR alpha 1 subunit, the chloride-substituted derivatives 5,7-dichloro-4-hydroxyquinoline-3-carboxylic acid and 7-chloro-4-hydroxyquinoline inhibited glycine currents in a mixed high affinity competitive and low-affinity noncompetitive fashion, whereas the related compounds 7-trifluoromethyl-4-hydroxyquinoline-3-carboxylic acid and 7-trifluoromethyl-4-hydroxyquinoline showed purely competitive antagonism. Our data suggest a model of the pharmacophore of the GlyR that displays significant similarity to that proposed for the glycine binding site of the N-methyl-D-aspartate receptor.  相似文献   

13.
1. Binding of D,L-(E)-2-amino-4-[3H]-propyl-5-phosphono-3-pentenoic acid ([3H]-CGP 39653), a high affinity, selective antagonist at the glutamate site of the N-methyl-D-aspartate (NMDA) receptor, was investigated in rat brain by means of receptor binding and quantitative autoradiography techniques. 2. [3H]-CGP 39653 interacted with striatal and cerebellar membranes in a saturable manner and to a single binding site, with KD values of 15.5 nM and 10.0 nM and receptor binding densities (Bmax values) of 3.1 and 0.5 pmol mg-1 protein, respectively. These KD values were not significantly different from that previously reported in the cerebral cortex (10.7 nM). 3. Displacement analyses of [3H]-CGP 39653 in striatum and cerebellum, performed with L-glutamic acid, 3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and glycine showed a pharmacological profile similar to that reported in the cerebral cortex. L-Glutamic acid and CPP produced complete displacement of specific binding with Ki values not significantly different from the cerebral cortex. Glycine inhibited [3H]CGP 39653 binding with shallow, biphasic curves, characterized by a high and a low affinity component. Furthermore, glycine discriminated between these regions (P < 0.005, one-way ANOVA), since the apparent Ki of the high affinity component of the glycine inhibition curve (KiH) was significantly lower (Fisher's protected LSD) in the striatum than the cortex (33 nM and 104 nM, respectively). 4. Regional binding of [3H]-CGP 39653 to horizontal sections of rat brain revealed a heterogeneous distribution of binding sites, similar to that reported for other radiolabelled antagonists at the NMDA site (D-2-[3H]-amino-5-phosphonopentanoic acid ([3H]-D-AP5) and [3H]-CPP). High values of binding were detected in the hippocampal formation, cerebral cortex and thalamus, with low levels in striatum and cerebellum. 5. [3H]-CGP 39653 binding was inhibited by increasing concentrations of L-glutamic acid, CPP and glycine. L-Glutamic acid and CPP completely displaced specific binding in all regions tested, with similar IC50 values throughout. Similarly, glycine was able to inhibit the binding in all areas considered: 10 microM and 1 mM glycine reduced the binding to 80% and 65% of control (average between areas) respectively. The percentage of specific [3H]-CGP 39653 binding inhibited by 1 mM glycine varied among regions (P < 0.05, two-ways ANOVA). Multiple comparison, performed by Fisher's protected LSD method, showed that the inhibition was lower in striatum (72% of control), with respect to cortex (66% of control) and hippocampal formation (58% of control). 6. The inhibitory action of 10 microM glycine was reversed by 100 microM 7-chloro-kynurenic acid (7-CKA), a competitive antagonist of the glycine site of the NMDA receptor channel complex, in all areas tested. Moreover, reversal by 7-CKA was not the same in all regions (P < 0.05, two-ways ANOVA). In fact, in the presence of 10 microM glycine and 100 microM 7-KCA, specific [3H]-CGP 39653 binding in the striatum was 131% of control, which was significantly greater (Fisher's protected LSD) than binding in the hippocampus and the thalamus (104% and 112% of control, respectively). 7. These results demonstrate that [3H]-CGP 39653 binding can be inhibited by glycine in rat brain regions containing NMDA receptors; moreover, they suggest the existence of regionally distinct NMDA receptor subtypes with a different allosteric mechanism of [3H]-CGP 39653 binding modulation through the associated glycine site.  相似文献   

14.
While attempting to map a central region in the M3-M4 linker of the N-methyl-D-aspartate receptor NR1 subunit, we found that mutation of a single position, Ala-714, greatly reduced the apparent affinity for glycine. Proximal N-glycosylation localized this region to the extracellular space. Glycine affinities of additional Ala-714 mutations correlated with side chain volume. Substitution of alanine 714 with cysteine did not alter glycine sensitivity, although this mutant was rapidly inhibited by dithionitrobenzoate. Glycine protected the A714C mutant from modification by dithionitrobenzoate, whereas the co-agonist L-glutamate was ineffective. These experiments place Ala-714 in the glycine binding pocket of the N-methyl-D-aspartate receptor, a determination not predicted by previous structural models based on bacterial periplasmic binding protein homology.  相似文献   

15.
The mechanism by which lovastatin lowers cholesterol levels is well characterized but little is known about its anti-mitogenic and anti-tumorigenic mechanism. Here we demonstrate that lovastatin disrupts early events in the mitogenic signaling pathways of insulin. Insulin treatment (200 mM) of quiescent HIR rat-1 fibroblasts results in an 8-fold stimulation of phosphatidylinositol-3-kinase (PI-3-K) activity. Overnight pretreatment of cells with lovastatin (20 microM) inhibits insulin stimulation of PI-3-K activity by 75%. Immunoprecipitation and immunoblotting experiments using antibodies against the regulatory subunit of PI-3-K (p85), phosphotyrosine, and insulin receptor alpha and beta subunits demonstrate that lovastatin inhibits the association of p85 with tyrosine phosphorylated insulin receptor substrate-1 and the beta subunit of the insulin receptor. Furthermore, lovastatin dramatically reduces (70-100%) the level of tyrosine phosphorylated insulin receptor beta subunit following insulin stimulation. These results clearly demonstrate that lovastatin disrupts early events of insulin mitogenic signaling by reducing the levels of tyrosine phosphorylated beta subunit and suggest that this disruption is a potential mechanism for the anti-mitogenic effect of lovastatin.  相似文献   

16.
Antisense oligodeoxynucleotides were used to determine whether alterations in the expression of N-methyl-D-aspartate (NMDA) receptor subunit mRNA are responsible for developmental changes in the sensitivity of receptors to agonists and antagonists. Xenopus laevis oocytes were injected with mRNA prepared from neonatal and adult rat cerebral cortex, and the effects of agonists and antagonists were determined under voltage-clamp conditions. Glycine-site antagonists like 7-chlorokynurenate and glutamate-site antagonists like CGP-39653 were more potent at NMDA receptors expressed from mRNA from adult rat cerebral cortex than those expressed from mRNA from 1-day-old rat. NMDA receptors from 1-day-old rat cerebral cortex were more sensitive to activation by glycine than were receptors from adult rat cerebral cortex. 7-Chlorokynurenate and CGP-39653 were more potent inhibitors of responses seen with heteromeric NR1/NR2A receptors than with NR1/ NR2B receptors. Conversely, heteromeric NR1/NR2B receptors were more sensitive to activation by glycine than were NR1/NR2A receptors. We previously described a delay in the expression of the NR2A subunit in developing rat brain. Anti-sense oligodeoxynucleotides were used to determine whether the delayed expression of the NR2A subunit underlies changes in pharmacological properties observed during development. The properties of receptors seen when adult brain mRNA was coinjected with antisense oligodeoxynucleotides against the NR2A subunit were similar to those found in receptors from 1-day-old rat brain. These data suggest that changes in the sensitivity of NMDA receptors to antagonists and to glycine seen during development are a result of alterations in the expression of different species of NR2 subunit mRNA.  相似文献   

17.
We have previously shown that strychnine mimics the cytoprotective properties of glycine in renal proximal tubule (RPT) suspensions exposed to antimycin A (AA). The aims of this study were to determine whether the cytoprotective properties of strychnine applied to various types of nephrotoxicants and to examine the temporal aspects of the cytoprotection of glycine and strychnine. Tubular release of LDH activity was used as a marker of cell death. Glycine (2 mM) or strychnine (1 mM) added 5 min prior to the toxicant decreased LDH release in rabbit RPT suspensions exposed to 25 microM tetrafluoroethyl-L-cysteine (TFEC), 10 microM HgCl2, 0.5 mM t-butyl hydroperoxide (TBHP), or 0.2 mM bromohydroquinone (BHQ) for 4 hr, or 2 mM sodium cyanide (NaCN) for 2 hr. The relative rank order of effectiveness of glycine and strychnine was NaCN = TFEC > BHQ > DCVC > TBHP > HgCl2. The temporal aspects of strychnine and glycine protection were examined by exposing RPT to either AA or TFEC for 1 or 3 hr, respectively, and then adding either 1 mM glycine or 1 mM strychnine. Glycine and strychnine decreased LDH release in AA-treated RPT at 1.25 and 2 hr and TFEC-treated RPT at 4 hr. In addition, when RPT exposed to AA or TFEC and treated with strychnine or glycine were washed at either 1 or 4 hr, protection was eliminated at later time points. When glycine was added to RPT treated with either PCBC, TFEC, or DCVC 5 min prior to or 30, 60, 120, and 180 min following toxicant addition, LDH release was reduced at all time points. These results demonstrate that strychnine and glycine protect RPT from a variety of diverse nephrotoxicants, strychnine and glycine do not need to be present at the time of toxic insult, strychnine and glycine cytoprotection is reversible, and strychnine and glycine act in the late phase of necrotic cell injury.  相似文献   

18.
We measured the permeability ratios (PX/PNa) of 3 wild-type, 1 hybrid, 2 subunit-deficient, and 22 mutant nicotinic receptors expressed in Xenopus oocytes for alkali metal and organic cations using shifts in the bi-ionic reversal potential of the macroscopic current. Mutations at three positions (2', 6', 10') in M2 affected ion selectivity. Mutations at position 2' (alpha Thr244, beta Gly255, gamma Thr253, delta Ser258) near the intracellular end of M2 changed the organic cation permeability ratios as much as twofold and reduced PCs/PNa and PK/PNa by 16-18%. Mutations at positions 6' and 10' increased the glycine ethyl ester/Na+ and glycine methyl ester/Na+ permeability ratios. Two subunit alterations also affected selectivity: omission of the delta subunit reduced PCs/PNa by 16%, and substitution of Xenopus delta for mouse delta increased Pguanidinium/PNa more than twofold and reduced PCs/PNa by 34% and PLi/PNa by 20%. The wild-type mouse receptor displayed a surprising interaction with the primary ammonium cations; relative permeability peaked at a chain length equal to four carbons. Analysis of the organic permeability ratios for the wild-type mouse receptor shows that (a) the diameter of the narrowest part of the pore is 8.4 A; (b) the mouse receptor departs significantly from size selectivity for monovalent organic cations; and (c) lowering the temperature reduces Pguanidinium/PNa by 38% and Pbutylammonium/PNa more than twofold. The results reinforce present views that positions -1' and 2' are the narrowest part of the pore and suggest that positions 6' and 10' align some permeant organic cations in the pore in an interaction similar to that with channel blocker, QX-222.  相似文献   

19.
Repeated applications of elevated K+ (50 or 75 mM) in cerebral cortical cup superfusates was used to evoke an efflux of gamma-aminobutyric acid (GABA), glutamate, aspartate, glycine, adenosine, and inosine from the in vivo rat cerebral cortex. K+ (50 mM) significantly elevated GABA levels in cup superfusates but had little effect on the efflux of glutamate, aspartate, glycine, adenosine, or inosine. K+ (75 mM) significantly enhanced the efflux of GABA, aspartate, adenosine, and inosine and caused nonsignificant increases in glutamate and glycine efflux. The adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA), applied in cup superfusates at a concentration of 10(-10) M had no effect on either basal or K(+)-evoked release of any of the amino acids or purines measured. At 10(-6) M CPA significantly enhanced aspartate release, and depressed GABA efflux. The selective A2 adenosine receptor agonist 2-p(2-carboxyethyl) phenethylamino-5'-N-ethyl-carboxamidoadenosine (CGS 21680) (10(-8) M) was without effect on either basal, or K(+)-evoked, efflux of amino acids or purines. The enhancement of aspartate (an excitotoxic amino acid) efflux by higher concentrations of CPA is likely due to activation of adenosine A2b receptors. This observation may be of relevance when selecting adenosinergic agents to treat ischemic or traumatic brain injuries. Overall, the results suggest that effects of adenosine receptor agonists on K(+)-evoked efflux of transmitter amino acids from the in vivo rat cerebral cortex may not be comparable to those observed with in vitro preparations.  相似文献   

20.
The polyamine spermine has multiple effects on N-methyl-D-aspartate (NMDA) receptors, including "glycine-independent" stimulation, which is seen in the presence of saturating concentrations of glycine; "glycine-dependent" stimulation, which is due to an increase in the affinity of the receptor for glycine; and voltage-dependent block. These effects may involve three separate polyamine binding sites on the receptor. To identify amino acid residues that are important for spermine binding, we used site-directed mutagenesis to alter amino acids in and around a region of the NR1 subunit of the NMDA receptor that shows homology with PotD, a polyamine binding protein from Escherichia coli. Mutated subunits, expressed in heteromeric and homomeric NMDA receptors, were studied by voltage-clamp recording in Xenopus oocytes. Mutation of two acidic residues (E339-E342) to neutral amino acids reduced or abolished glycine-independent stimulation by spermine without affecting glycine-dependent stimulation or voltage-dependent block by spermine. Mutation of these residues also had modest effects on sensitivity to protons and to ifenprodil but did not alter sensitivity to glutamate and glycine or to voltage-dependent block by Mg2+. Residue E342 in NR1 appears to be critical for glycine-independent spermine stimulation. Mutations at equivalent positions in NR2A(E352Q) or NR2B(E353Q) had no effect on sensitivity to spermine, pH, or ifenprodil. Residue E342 in NR1 may form part of a discrete spermine binding site on the NMDA receptor or be involved in the mechanism of modulation by polyamines. This residue may also be involved in modulation by protons and ifenprodil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号