共查询到17条相似文献,搜索用时 78 毫秒
1.
利用高光谱图像空间、谱间相关性不同的特点,本文提出了一种基于混合整型变换和三维分层树集合划分算法(3D-SPIHT)的高光谱图像无损压缩方法,首先将波段进行分组,针对每一分组,采用不同的整型变换技术去相关,然后对变换系数进行系数重组,采用高效的基于小波系数特点的3D-SPIHT编码方法得到嵌入式码流,具有一定的抗误码性能.实验结果表明,该方法能够有效的去除高光谱图像的空间和谱间相关性,与现有的国际标准JPEG-LS、JPEG2000和基于三维离散余弦变换(3D-DCT)或三维离散小波变换(3D-DWT)的编码方法相比,压缩后的平均比特率均有明显降低. 相似文献
2.
3.
利用高光谱图像具有较强谱间相关性的特点,本文提出了一种基于2D/3D混合自适应预测的高光谱图像无损压缩方法,首先根据相关系数计算波段预测顺序,通过局部纹理分析进行二维空间预测,采用基于神经网络模型的自适应预测方法进行三维预测,然后利用预测波段与当前波段间邻域块的相关性对二维预测和三维预测的结果进行校正,对预测残差采用基于上下文模型的Golomb编码.实验结果表明,应用于四种不同遥感器所获取的图像,该方法都能够有效的去除高光谱图像的空间和谱间相关性,与无损压缩国际标准JPEG-LS和3D-APA算法相比,压缩后的平均比特率均有明显降低. 相似文献
4.
高光谱图像海量数据给存储和传输带来极大困难,必须对其进行有效压缩。针对高光谱图像不同频谱波段间相关性不同的特点,提出一种基于波段分组的高光谱图像无损压缩算法。为了降低波段排序算法的计算量,根据相邻波段相关性大小预先进行分组,采用最佳后向排序算法对各组波段进行重新排序。在当前波段和参考波段中选取具有相同空间位置的邻域结构,在最小二乘准则下,利用邻域像素对当前预测像素进行最优谱间预测。参考波段和预测残差数据进行JPEG-LS压缩。对OMIS-I型高光谱图像进行实验的结果表明,与基于多波段预测算法相比,该算法可进一步降低压缩后的平均比特率。 相似文献
5.
研究了一种将变换矩阵分解为三角元素可逆矩阵(TERM)实现的主成分变换整数近似算法(IPCT).为限制误差和提高计算效率,改进了TERM分解中选择主元的方法.结合可逆整数PCT和三维Tarp编码技术,提出了一种新的高光谱图像无损压缩算法.该算法在进行空间维小波变换以后,利用改进的IPCT去除谱间相关;在编码阶段,新颖的三维Tarp编码器能利用五个简单的递归滤波器进行概率估计,以驱动一个非自适应算术编码器,对变换系数的显著性映射和细化信息进行熵编码.该算法复杂度较低,能够产生嵌入式码流,并且较已有的算法能获得更高的压缩比. 相似文献
6.
基于双向预测的高光谱图像无损压缩 总被引:1,自引:1,他引:1
提出了一种基于双向预测的高光谱图像无损压缩算法。该算法首先采用自适应波段选择算法选出信息量较大的波段,然后利用聚类算法对这些波段的谱向矢量进行分类预处理。为了便于组织谱间预测过程,根据相邻波段相关性大小进行自适应波段分组,采用双向预测的方法去除谱间相关性。通过在参考波段和预测波段中定义三维上下文预测结构,在聚类结果的基础上,对各个像素分别训练最优的预测系数,从而实现当前波段的有效预测。对AVIRIS型高光谱图像的实验结果表明,该方法可获得较好的无损压缩性能。 相似文献
7.
高光谱海量数据的有效压缩成为遥感技术发展中需要迫切解决的问题。该文提出了一种基于聚类的高光谱图像无损压缩算法。针对高光谱图像不同频谱波段间相关性不同的特点,根据相邻波段相关性大小进行波段分组。由于高光谱图像波段数量较多,采用自适应波段选择算法对高光谱图像进行降维,以获取信息量较大的部分波段,利用k均值算法对降维后的波段谱矢量进行聚类。采用多波段预测的方案对各组中的波段进行预测,对于各个分类中的每个像素,分别选取与其空间相邻的已编码的部分同类点进行训练,从而获得当前像素的谱间最优预测系数。对AVIRIS型高光谱图像的实验结果表明,该算法可显著降低压缩后的平均比特率。 相似文献
8.
9.
高光谱数据的有效压缩成为遥感技术发展中需要迫切解决的问题.提出了一种基于分类非线性预测的高光谱图像无损压缩算法.针对不同频谱波段间相关性不同的特点,根据相邻波段相关性大小进行波段分组.为提高谱间预测性能,对各组波段进行最优排序.采用自适应波段选择算法对高光谱图像进行降维,并利用k-means算法对降维后波段的谱向矢量进行分类.在参考波段和预测波段中选取具有相同空间位置的上下文结构,在分类结果的基础上,对当前波段进行谱间非线性预测.参考波段采用JPEG-LS标准进行压缩,预测残差进行Golomb-Rice编码.对AVIRIS型高光谱图像的实验结果表明,该算法可显著降低压缩后的平均比特率. 相似文献
10.
11.
随着成像光谱仪向着高光谱分辨率、高空间分辨率方向发展,高光谱图像的数据量呈几何级数增长。由于数据传输和存储能力的限制,必须对高光谱图像进行有效压缩。首先,对高光谱图像的相关性进行了深入分析,得知其具有一定的空间相关性和极强的谱间相关性,从而具有较强的可压缩性。其次,结合JPEG2000对DPCM进行了修改,提出了基于一阶线性预测与JPEG2000相结合的无损压缩方案。最后,在软件平台上实现了该方案,并取得了较好的压缩效果。结果表明,该方案可以有效的实现高光谱图像无损压缩,验证了方案的可行性,为硬件平台上实现该方案提供了理论依据。 相似文献
12.
提出一种基于双估计值的查找表预测高光谱图像无损压缩算法。首先,在高光谱图像的第1谱段图像采用JPEG-LS中值预测器进行谱段内预测,其他谱段图像采用谱间预测。谱间预测采用以下步骤,利用3个LUT预测值求出第一个估计值;其次用当前谱段内和前一谱段内特定的8个像素点计算出第二个估计值,将谱段内预测和谱间预测有效地结合,去除了高光谱图像的谱间相关性。然后,用3个LUT预测值和最终的预测估计值比较,选出最终的预测值。最后,将预测残差进行算术编码。实验结果表明,针对NASA的AVIRIS高光谱图像,用本文算法比LAIS-LUT的压缩比平均提高了0.03~0.11,针对国内OIMS-I高光谱图像,比LAIS-LUT压缩比平均提高了0.01~0.09,有效的提高了压缩比。 相似文献
13.
为了提高高光谱遥感图像的压缩比,提出一种基于残差偏置和查找表的高光谱图像无损压缩方法。在高光谱图像的第一谱段图像采用了无损压缩标准中值预测器方法进行谱段内预测,其它谱段图像采用谱间预测方法。首先,在多级查找表(LAIS-LUT)预测方法的基础上搜索当前预测值,用当前预测值周围特定的5个像素点和当前像素值周围相同位置的5个像素点进行比较,通过比较结果,得出一个偏置值;然后在预测残差上加上偏置值;最后,将最终预测残差进行算术编码,并进行了理论分析和实验验证。结果表明,针对美国航空航天局的高光谱图像,所提出的方法比LAIS-LUT压缩比平均提高0.05;针对国内高光谱图像,该方法比LAIS-LUT压缩比平均提高0.07。这一结果对提高高光谱图像压缩效率是有帮助的。 相似文献
14.
基于干涉多光谱图像成像原理和特点,提出一种干涉多光谱图像无损压缩算法。在压缩编码时,应充分利用图像的列相关性,采用基于列的比特平面编码和游程编码,对多光谱图像进行无损压缩,特别适于低分辨率的多光谱图像压缩。目前无损压缩算法的压缩比基本在1.6~2.4之间,本算法的压缩倍数一般可达到2倍以上,并且具有良好的抗误码性能。 相似文献
15.
16.