首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commercially pasteurized milk (approximately 2% milkfat) was heated at 85 to 87 degrees C/30 min, inoculated to contain 2,000 to 6,000 CFU/ml of Listeria monocytogenes, Salmonella typhimurium DT104, or Escherichia coli O157:H7, cultured at 43 degrees C for 4 h with a 2.0% (wt/wt) commercial yogurt starter culture, stored 12 to 14 h at 6 degrees C, and centrifuged to obtain a Labneh-like product. Alternatively, traditional salted and unsalted Labneh was prepared using a 3.0% (wt/wt) starter culture inoculum, similarly inoculated after manufacture with the aforementioned pathogens, and stored at 6 degrees C and 20 degrees C. Throughout fermentation, Listeria populations remained unchanged, whereas numbers of Salmonella increased 0.33 to 0.47 logs during the first 2 h of fermentation and decreased thereafter. E. coli populations increased 0.46 to 1.19 logs during fermentation and remained that these levels during overnight cold storage. When unsalted and salted Labneh were inoculated after manufacture, Salmonella populations decreased >2 logs in all samples after 2 days, regardless of storage temperature, with the pathogen no longer detected in 4-day-old samples. Numbers of L. monocytogenes decreased from 2.48 to 3.70 to < 1.00 to 1.95 logs after 2 days with the pathogen persisting up to 15 days in one lot of salted/unsalted Labneh stored at 6 degrees C. E. coli O157:H7 populations decreased from 3.39 to 3.7 to < 1.00 to 2.08 logs during the first 2 days, with the pathogen no longer detected in any 4-day-old samples. Inactivation rates for all three pathogens in Labneh were unrelated to storage temperature or salt content. Unlike L. monocytogenes that persisted up to 15 days in Labneh, rapid inactivation of Salmonella typhimurium DT104 and E. coli O157:H7 suggests that these emerging foodborne pathogens are of less public health concern in traditional Labneh.  相似文献   

2.
Bacterial pathogens may colonize meat plants and increase food safety risks following survival, stress hardening, or proliferation in meat decontamination fluids (washings). The objective of this study was to evaluate the ability of Escherichia coli O157:H7, Salmonella Typhimurium DT 104, and Listeria monocytogenes to survive or grow in spray-washing fluids from fresh beef top rounds sprayed with water (10 or 85 degrees C) or acid solutions (2% lactic or acetic acid, 55 degrees C) during storage of the washings at 4 or 10 degrees C in air to simulate plant conditions. Inoculated Salmonella Typhimurium DT 104 (5.4 +/- 0.1 log CFU/ml) died off in lactate (pH 2.4 +/- 0.1) and acetate (pH 3.1 +/- 0.2) washings by 2 days at either storage temperature. In contrast, inoculated E. coli O157:H7 (5.2 +/- 0.1 log CFU/ml) and L. monocytogenes (5.4 +/- 0.1 log CFU/ml) survived in lactate washings for at least 2 days and in acetate washings for at least 7 and 4 days, respectively; their survival was better in acidic washings stored at 4 degrees C than at 10 degrees C. All inoculated pathogens survived in nonacid (pH > 6.0) washings, but their fate was different. E. coli O157:H7 did not grow at either temperature in water washings, whereas Salmonella Typhimurium DT 104 failed to multiply at 4 degrees C but increased by approximately 2 logs at 10 degrees C. L. monocytogenes multiplied (0.6 to 1.3 logs) at both temperatures in water washings. These results indicated that bacterial pathogens may survive for several days in acidic, and proliferate in water, washings of meat, serving as potential cross-contamination sources, if pathogen niches are established in the plant. The responses of surviving pathogens in meat decontamination waste fluids to acid or other stresses need to be addressed to better evaluate potential food safety risks.  相似文献   

3.
Effects of flaking and color modifying (treatment with pH 5.8, 7.4 and 8.0 phosphate buffers) boneless, skinless turkey thighs on microbial numbers were determined. Aerobic, psychotrophic, and coliform analyses were conducted on intact thigh (IT) before processing and on flaked turkey (FT) and color-modified turkey (CMT) held up to 5 days at 3°C and for 30 days at -20°C. Aerobic and psychrotrophic counts were not different (p > 0.05) between IT and 1-day FT or between FT and CMT at any sampling interval. Mean coliform levels in FT did not differ (p < 0.05) from those in CMT after 1 day at 3°C. Properly performed flaking and color modification do not compromise the microbial quality of turkey.  相似文献   

4.
Listeria monocytogenes and Salmonella are pathogenic bacteria that can contaminate food products during or after processing. Ready-to-eat (RTE) food does not undergo any treatment to ensure its safety before consumption, and therefore risk of foodborne disease must be considered if these pathogens are present in the food. To evaluate the prevalence of these pathogens in RTE food, 140 RTE fish product samples, 501 RTE meat product samples, 462 RTE dairy samples, and 123 RTE dishes and desserts, providing a total of 1,226 samples, were collected from retail stores and food industry and analyzed for the presence of L. monocytogenes. A total of 1,379 samples consisting of 187 RTE fish products and 569 RTE meat products, 484 RTE dairy products, and 139 RTE dishes and desserts were collected and analyzed for the presence of Salmonella. L. monocytogenes was isolated from 20% of frozen Atlantic bonito small pies, 7.9% of smoked salmon samples, 11.1% of the pork luncheon meat samples, 6.2% of frozen chicken croquettes, 16.9% of cured dried sausage samples, 12.5% of cooked ham samples, and 20% of cooked turkey breast samples. L. monocytogenes was also found to be present in 1.3% of fresh salty cheese samples and 15.1% of frozen cannelloni samples. Salmonella was isolated from 1.2% of smoked salmon samples, 1.5% of frozen chicken croquettes, 2% of cooked ham samples, and 11.1% of cured dried sausage samples. Overall, occurrence of these pathogens in RTE foods was similar to that previously reported in the literature.  相似文献   

5.
The antimicrobial activities of sodium lactate (SL) and sodium acetate (SA) are well documented, but there is limited information on the effect of their combination or of the combination of SL and sodium diacetate (SDA) on survival and growth of Listeria monocytogenes and salmonellae in meat. Effects of SL (1.8 and 2.5%), SDA (0.1 and 0.2%), or SA (0.2%) and their combinations on the behavior of L monocytogenes and Salmonella enterica serovar Enteritidis were investigated in sterile comminuted beef (pH 6.3, 79% moisture) during storage at 5 and 10 degrees C. Although L. monocytogenes grew faster than Salmonella Enteritidis in control samples at 10 degrees C, numbers of both pathogens increased from 3.5 to approximately 8.0 log CFU/g after 20 days. SL (1.8%) decreased the growth rate of both L. monocytogenes and Salmonella Enteritidis. SDA (0.2%) was more effective than SL in decreasing the growth rate of L monocytogenes, and it caused a more than 1 log CFU/g decline in initial numbers of Salmonella Enteritidis during storage for 25 days at 10 degrees C. Synergy was observed by combinations of SL and SDA. Combinations of 2.5% SL and 0.2% SDA were bacteriostatic to L. monocytogenes and bactericidal to Salmonella Enteritidis after 20 days at 10 degrees C. At 5 degrees C, a listeriostatic effect was produced by 1.8% SL + 0.1% SDA, whereas numbers of Salmonella Enteritidis were less than 10 cells/g after refrigeration for 30 days. Although SA was consistently and significantly less inhibitory than SDA, its mixtures with SL also demonstrated synergistic activity against both pathogens. Combinations of 2.5% SL and 0.2% SDA can be expected to greatly enhance the safety of refrigerated and temperature-abused ready-to-eat meats.  相似文献   

6.
At 55 to 70 degrees C, thermal inactivation D-values for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes were 19.05 to 0.038, 43.10 to 0.096, and 33.11 to 0.12 min, respectively, in ground turkey and 21.55 to 0.055, 37.04 to 0.066, and 36.90 to 0.063 min, respectively, in ground beef. The z-values were 5.73, 5.54, and 6.13 degrees C, respectively, in ground turkey and 5.43, 5.74, and 6.01 degrees C, respectively, in ground beef. In both ground turkey and beef, significant (P < 0.05) differences were found in the D-values between E. coli O157:H7 and Salmonella or between E. coli O157:H7 and L. monocytogenes. At 65 to 70 degrees C, D-values for E. coli O157:H7, Salmonella, and L. monocytogenes were also significantly (P < 0.05) different between turkey and beef. The obtained D- and z-values were used in predicting process lethality of the pathogens in ground turkey and beef patties cooked in an air impingement oven and confirmed by inoculation studies for a 7-log (CFU/g) reduction of E. coli O157:H7, Salmonella, and L. monocytogenes.  相似文献   

7.
This work aimed to assess the growth and survival of four foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus) in beer. The effects of ethanol, pH, and storage temperature were investigated for the gram-negative pathogens (E. coli O157:H7 and Salmonella Typhimurium), whereas the presence of hops ensured that the gram-positive pathogens (L. monocytogenes and S. aureus) were rapidly inactivated in alcohol-free beer. The pathogens E. coli O157:H7 and Salmonella Typhimurium could not grow in the mid-strength or full-strength beers, although they could survive for more than 30 days in the mid-strength beer when held at 4°C. These pathogens grew rapidly in the alcohol-free beer; however, growth was prevented when the pH of the alcohol-free beer was lowered from the "as received" value of 4.3 to 4.0. Pathogen survival in all beers was prolonged at lowered storage temperatures.  相似文献   

8.
A total of 800 meat and poultry products were purchased from the retail marketplace in Edmonton, Alberta, Canada. The products consisted of raw ground beef, chicken legs, pork chops, and ready-to-eat fermented sausage, roast beef, processed turkey breast, chicken wieners, and beef wieners. The samples were analyzed to determine the prevalence of Shiga toxin-producing Escherichia coli, Salmonella, Campylobacter spp., and Listeria monocytogenes. Shiga toxin-producing E. coli 022: H8 was found in one raw ground beef sample. Salmonella and Campylobacter were found in 30 and 62% of raw chicken legs, respectively. L. monocytogenes was found in 52% of raw ground beef, 34% of raw chicken legs, 24% of raw pork chops, 4% of fermented sausages, 3% of processed turkey breast, 5% of beef wieners, and 3% of chicken wieners. The occurrence of pathogens in this study is similar to that in retail products in many other international locales.  相似文献   

9.
Sterile slices of cooked uncured turkey loaf were inoculated with 106 CFU of either Salmonella typhimurium, Listeria monocytogenes, Escherichia coli, Enterococcus faecalis, Citrobacter freundii, Klebsiella pneumoniae, or Enterobacter cloacae. Inoculated samples were vacuum-packaged and stored at 3 ± 1°C. Microorganisms were enumerated at 0, 3, 6, 9, 12, and 15 days on nonselective media . K. pneumoniae exhibited the least cold-tolerance with a log10 1.70 decrease in numbers. The coliforms E. cloacae, E. coli, and C. freundii had a survival pattern similar to that of S. typhimurium, with population decreases of log10 0.65, 0.82, 1.13, and 0.79, respectively . E. faecalis and L. monocytogenes were significantly more cold-resistant, with a decrease of log10 0.20 and no significant change in numbers, respectively. Survival of E. faecalis was not significantly (p < 0.01) different than that of L. monocytogenes, suggesting the use of enterococci as indicators of L. monocytogenes contamination of processed meats .  相似文献   

10.
In this study the survival and growth patterns of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in various concentrations of black carrot juice were investigated during incubation period at 4 °C and 37 °C for 7 days. Several parameters, such as juice concentration (%), pH, incubation temperature (°C) and time (days) were found effective on the survival of pathogens tested. Although L. monocytogenes has been found to be the less resistant microorganism to the variable conditions, there were only ca. 1 and 2 log reductions in the number of the cells in the juice samples incubated at 4 °C for 2 and 7 days, respectively. Incubating at low temperature (4 °C) enhanced the survival of test microorganisms.  相似文献   

11.
The survival of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes was determined on almonds and pistachios held at typical storage temperatures. Almond kernels and inshell pistachios were inoculated with four- to six-strain cocktails of nalidixic acid-resistant Salmonella, E. coli O157:H7, or L. monocytogenes at 6 log CFU/g and then dried for 72 h. After drying, inoculated nuts were stored at -19, 4, or 24°C for up to 12 months. During the initial drying period after inoculation, levels of all pathogens declined by 1 to -log CFU/g on both almonds and pistachios. During storage, moisture content (4.8%) and water activity (0.4) of the almonds and pistachios were consistent at -19°C; increased slowly to 6% and 0.6, respectively, at 4°C; and fluctuated from 4 to 5% and 0.3 to 0.5 at 24°C, respectively. Every 1 or 2 months, levels of each pathogen were enumerated by plating; samples were enriched when levels fell below the limit of detection. No reduction in population level was observed at -19 or 4°C for either pathogen, with the exception of E. coli O157:H7-inoculated almonds stored at 4°C (decline of 0.09 log CFU/g/month). At 24°C, initial rates of decline were 0.20, 0.60, and 0.71 log CFU/g/month on almonds and 0.15, 0.35, and 0.86 log CFU/g/month on pistachios for Salmonella, E. coli O157:H7, and L. monocytogenes, respectively, but distinct tailing of the survival curves was noted for both E. coli O157:H7 and L. monocytogenes.  相似文献   

12.
Garlic is known to have antimicrobial activity against several spoilage and pathogenic bacteria. However, the fate of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in garlic butter has not been reported. This study was undertaken to determine the viability of these organisms in garlic butter as affected by the type of raw minced garlic added to the butter, storage temperature, and storage time. Unsalted butter at 40 degrees C was combined with raw minced jumbo, elephant, or small-cloved garlic at a 4:1 butter/garlic ratio (wt/wt), inoculated with mixed-strain suspensions of Salmonella, E. coli O157:H7, or L monocytogenes, and stored at 4.4, 21, or 37 degrees C for up to 48 h. All pathogens retained their viability at 4.4 degrees C, regardless of the presence of garlic. The addition of garlic to butter enhanced the rates of inactivation of all three pathogens at 21 and 37 degrees C. The most rapid decline in pathogen populations was observed at 37 degrees C. The inactivation of L. monocytogenes occurred more slowly than did that of Salmonella or E. coli O157:H7. The inactivation of Salmonella and L. monocytogenes was more rapid in jumbo garlic butter than in elephant or small-cloved garlic butter. It is concluded that Salmonella, E. coli O157:H7, and L. monocytogenes did not grow in unsalted butter, with or without garlic added (20%, wt/wt), when inoculated products were stored at 4.4, 21, and 37 degrees C for up to 48 h.  相似文献   

13.
There is a lack of general knowledge regarding the behavior of foodborne pathogenic bacteria associated with jalape?o peppers. The survival and growth behaviors of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica on the interior and exterior of jalape?o peppers were determined under different storage conditions. Jalape?os were inoculated with a five-strain cocktail of L. monocytogenes, E. coli O157:H7, or S. enterica on the intact external surface, injured external surface, or intact internal cavity of jalape?o peppers and held at 7 or 12°C for a period of 14 days. Populations of each pathogen were determined at 0, 1, 2, 5, 7 10, and 14 days throughout storage. The uninjured, intact external surface of jalape?o peppers did not support growth of the pathogens tested under both storage conditions, with the exception of L. monocytogenes at 12°C. Populations of E. coli and S. enterica declined on the external injured surface of peppers at 7°C, but populations of L. monocytogenes remained consistent throughout the length of storage. At 12°C, L. monocytogenes and S. enterica populations increased throughout storage, and E. coli populations remained unchanged on injured surfaces. The uninjured internal cavity of the jalape?o supported growth of all pathogens at 12°C. Overall, L. monocytogenes was the microorganism most capable of growth and survival in association with jalape?o peppers for the scenarios tested. Results emphasize the importance of jalape?o pepper quality and proper storage conditions in preventing or reducing pathogen survival and growth.  相似文献   

14.
The survival of gram-positive and gram-negative foodborne pathogens in both commercial and laboratory-prepared kimchi (a traditional fermented food widely consumed in Japan) was investigated. It was found that Escherichia coli O157:H7, Salmonella Enteritidis, Staphylococcus aureus, and Listeria monocytogenes could survive in both commercial and laboratory-prepared kimchi inoculated with these pathogens and incubated at 10 degrees C for 7 days. However, when incubation was prolonged, the S. aureus level decreased rapidly from the initial inoculum level to the minimum detectable level within 12 days, whereas Salmonella Enteritidis and L. monocytogenes took 16 days to reach similar levels in commercial kimchi. On the other hand, E. coli O157:H7 remained at high levels throughout the incubation period. For laboratory-prepared kimchi, the S. aureus level decreased rapidly from the initial inoculum level to the minimum detectable level within 12 days, and L. monocytogenes took 20 days to reach a similar level. E. coli O157:H7 and Salmonella Enteritidis remained at high levels throughout the incubation period. The results of this study suggest that the contamination of kimchi with E. coli O157:H7, Salmonella Enteritidis, S. aureus, or L. monocytogenes at any stage of production or marketing could pose a potential risk.  相似文献   

15.
Chang JM  Fang TJ 《Food microbiology》2007,24(7-8):745-751
The microbiological safety of fresh produce is a significant concern of consumers and industry. After applying at an inoculated level (about 10(6) CFUg(-1)) of E. coli O157:H7 and Salmonella enterica serovars Typhimurium on shredded iceberg lettuce and water samples individually, they were stored at 4 degrees C for 14 days and 22 degrees C for 7 days to monitor the growth and survival of pathogens. The results showed that at the end of 4 degrees C storage, populations of two pathogens in lettuce and water decreased approximately 1 log CFUg(-1). However, microbial levels on shredded lettuce increased 3 logs within 3 days at 22 degrees C. Vinegar (acetic acid) had been used to reduce populations of foodborne pathogens in foods; hence, the antimicrobial effect of rice vinegar on the survival of E. coli O157:H7 in inoculated lettuce (10(4) and 10(7) CFUg(-1)) is examined in this study. Results were observed that the treatment of inoculated lettuce (10(7) CFUg(-1)) with commercial vinegar containing 5% acetic acid (pH 3.0) for 5 min would reduce 3 logs population at 25 degrees C. Less than a 1-log decrease in bacterial numbers was recovered during 5 min exposure to 0.5% (pH 3.26) acetic acid.  相似文献   

16.
The effects of acidified sodium chlorite (ASC) against Listeria monocytogenes on the surface of cooked roast beef were investigated. L. monocytogenes, strain V7, serotype 1/2a, was inoculated at numbers of 6.0 log CFU/g onto 5-g cubes of cooked regular or spicy roast beef. The samples were allowed to air dry for 1 h. The cooked roast beef samples were dipped into ASC or sprayed with ASC solutions of 250, 500, 750, or 1,000 ppm, then placed in bags with or without a vacuum and refrigerated at 4 degrees C. L. monocytogenes counts were determined after 0, 7, 14, 21, and 28 days of storage by spread plating roast beef samples onto Oxford agar plates that were incubated at 37 degrees C for 48 h. At day 28, the number of L. monocytogenes on the > or = 500 ppm ASC-treated spicy roast beef samples had count reductions that were >4.0 log CFU/g, whereas the same concentrations of ASC-treated regular roast beef samples had approximately a 2.5 log CFU/g reduction in L. monocytogenes counts when compared with the untreated samples. No significant differences (P > 0.05) were observed in L. monocytogenes counts between the vacuum- or nonvacuum-packaged ASC-treated cooked roast beef samples. Sensory evaluation showed no significant differences (P > 0.05) between ASC-treated and untreated roast beef. ASC can be used as a processing aid in the form of a dip or spray treatment to control L. monocytogenes on the surface of cooked roast beef.  相似文献   

17.
Recontamination of cooked ready-to-eat (RTE) chicken and beef products with Listeria monocytogenes has been a major safety concern. Natural antimicrobials in combinations can be an alternative approach for controlling L. monocytogenes. Therefore, the objectives of this study were to evaluate the inhibitory activities against L. monocytogenes of nisin (6,400 IU/ ml), grape seed extract (GSE; 1%), and the combination of nisin and GSE both in tryptic soy broth with 0.6% yeast extract (TSBYE) and on the surface of full-fat turkey frankfurters. TSBYE was incubated at 37 degrees C for 72 h and turkey frankfurters at 4 or 10'C for 28 days. Inocula were 6.7 or 5 log CFU per ml or g for TSBYE or frankfurters, respectively. After 72 h in TSBYE, nisin alone did not show any inhibitory activity against L. monocytogenes. The combination of nisin and GSE gave the greatest inhibitory activity in both TSBYE and on turkey frankfurters with reductions of L. monocytogenes populations to undetectable levels after 15 h and 21 days, respectively. This combination of two natural antimicrobials has the potential to control the growth and recontamination of L. monocytogenes on RTE meat products.  相似文献   

18.
Ready-to-eat turkey breast meat samples were surface-inoculated with a five-strain cocktail of Listeria monocytogenes cultures to a final concentration of approximately 10(7) CFU/g. The inoculated meat samples were vacuum-packaged and pressure treated at 300 MPa for 2 min, 400 MPa for 1 min, and 500 MPa for 1 min at initial sample temperatures of 1, 10, 20, 30, 40, 50, and 55 degrees C. L. monocytogenes was most resistant to pressure at temperatures between 10 and 30 degrees C. As temperature decreased below 10 degrees C or increased over 30 degrees C, its pressure sensitivity increased. This enhanced inactivation effect was more pronounced when meat samples were treated at higher temperature than at lower temperature. For example, a 1-min treatment of 500 MPa at 40 degrees C reduced the counts by 3.8 log(10), while at 1 and 20 degrees C the same treatment reduced counts by 1.4 and 0.9 log(10), respectively (P<0.05). The survival curves of L. monocytogenes were obtained at 300 MPa and 55 degrees C, 400 MPa and 50 degrees C, and 500 MPa and 40 degrees C. With increasing treatment time, the three survival curves showed a rapid initial drop in bacteria counts with a diminishing inactivation rate or tailing effect. The survival data were fitted with a linear and a nonlinear, Weibull, models. The Weibull model consistently produced better fit to the survival data than the linear model.  相似文献   

19.
Listeria monocytogenes did not multiply faster during storage at 7 degrees C on irradiated than on nonirradiated raw ground turkey, and there was a concentration-dependent inhibition of its multiplication by CO2. Ground turkey was gamma irradiated at 5 degrees C to 0, 1.5, and 2.5 kGy and inoculated (approximately 100 CFU/g) after irradiation with a cocktail of L. monocytogenes ATCC 7644, 15313, 49594, and 43256. The meat was then packaged in air-permeable pouches or under atmospheres containing 30 or 53% CO2, 19% O2, and 51 or 24% N2 and stored at 7 degrees C for up to 28 days. A dose of 2.5 kGy extended the time for the total plate count (TPC) to reach 10(7) CFU/g from 4 to 19 days compared to that for nonirradiated turkey in air-permeable pouches. Following a dose of 2.5 kGy at the end of the 28-day study, the TPCs were 10(6.42) and 10(4.98) under 25% and 50% CO2 atmospheres, respectively. Under air, 30% CO2, and 53% CO2 atmospheres, the populations of L. monocytogenes after 19 days incubation were 10(4.89), 10(3.60), and 10(2.67) CFU/g. The populations of lactic acid bacteria and anaerobic or facultative bacteria were also reduced by irradiation. Irradiating ground turkey did not decrease its safety when it was contaminated following processing with L. monocytogenes.  相似文献   

20.
In January 1999, the Food Safety and Inspection Service (FSIS) finalized performance standards for the cooking and chilling of meat and poultry products in federally inspected establishments. More restrictive chilling (stabilization) requirements were adopted despite the lack of strong evidence of a public health risk posed by industry practices employing the original May 1988 guidelines (U.S. Department of Agriculture FSIS Directive 7110.3). Baseline data led the FSIS to estimate a "worst case" of 10(4) Clostridium perfringens cells per g in raw meat products. The rationale for the FSIS performance standards was based on this estimate and the assumption that the numbers detected in the baseline study were spores that could survive cooking. The assumptions underlying the regulation stimulated work in our laboratory to help address why there have been so few documented outbreaks of C. perfringens illness associated with the consumption of commercially processed cooked meat and poultry products. Our research took into account the numbers of C. perfringens spores in both raw and cooked products. One hundred ninety-seven raw comminuted meat samples were cooked to 73.9 degrees C and analyzed for C. perfringens levels. All but two samples had undetectable levels (<3 spores per g). Two ground pork samples contained 3.3 and 66 spores per g. Research was also conducted to determine the effect of chilling on the outgrowth of C. perfringens spores in cured and uncured turkey. Raw meat blends inoculated with C. perfringens spores, cooked to 73.9 degrees C, and chilled according to current guidelines or under abuse conditions yielded increases of 2.25 and 2.44 log10 CFU/g for uncured turkey chilled for 6 h and an increase of 3.07 log10 CFU/g for cured turkey chilled for 24 h. No growth occurred in cured turkey during a 6-h cooling period. Furthermore, the fate of C. perfringens in cooked cured and uncured turkey held at refrigeration temperatures was investigated. C. perfringens levels decreased by 2.52, 2.54, and 2.75 log10 CFU/g in cured turkey held at 0.6, 4.4, and 10 degrees C, respectively, for 7 days. Finally, 48 production lots of ready-to-eat meat products that had deviated from FSIS guidelines were analyzed for C. perfringens levels. To date, 456 samples have been tested, and all but 25 (ranging from 100 to 710 CFU/g) of the samples contained C. perfringens at levels of <100 CFU/g. These results further support historical food safety data that suggest a very low public health risk associated with C. perfringens in commercially processed ready-to-eat meat and poultry products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号