首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
推导了MIMO-OFDM系统在衰落信道下的各态历经容量、最优发送策略、使用等功率分配时的容量上界以及相对于单天线OFDM系统的容量增益。结果表明:天线数和平均接收信噪比是决定MIMO-OFDM系统信道容量的关键因素。天线数越多或者接收信噪比越大,信道的容量越大,信道容量几乎不受多径时延扩展的影响。慢衰落信道下的最大信道容量可以使用空-频两维注水算法得到,当接收信噪比足够大时,最大信道容量也可以用平均分配发送功率的方法逼近。  相似文献   

2.
Capacity of fading channels with channel side information   总被引:29,自引:0,他引:29  
We obtain the Shannon capacity of a fading channel with channel side information at the transmitter and receiver, and at the receiver alone. The optimal power adaptation in the former case is “water-pouring” in time, analogous to water-pouring in frequency for time-invariant frequency-selective fading channels. Inverting the channel results in a large capacity penalty in severe fading  相似文献   

3.
采用两条支路分集接收的相关瑞利衰落信道容量   总被引:5,自引:0,他引:5  
李光球 《电子学报》2003,31(7):1018-1021
本文研究采用两条支路最大比合并(MRC)或选择合并(SC)分集接收的相关瑞利衰落信道理论容量推导恒定发射功率自适应M进制正交幅度调制(M-QAM)的频谱效率,并将它们与独立同分布瑞利信道理论容量进行比较,其结果对收发信机之间无视距分量路径、接收机上分集天线之间的距离小于半个波长的无线通信系统设计具有指导作用.  相似文献   

4.
For pt.I see ibid., vol.47, no.3, p.1083-1102 (2002). We study three capacity regions for fading broadcast channels and obtain their corresponding optimal resource allocation strategies: the ergodic (Shannon) capacity region, the zero-outage capacity region, and the capacity region with outage. In this paper, we derive the outage capacity regions of fading broadcast channels, assuming that both the transmitter and the receivers have perfect channel side information. These capacity regions and the associate optimal resource allocation policies are obtained for code division (CD) with and without successive decoding, for time division (TD), and for frequency division (FD). We show that in an M-user broadcast system, the outage capacity region is implicitly obtained by deriving the outage probability region for a given rate vector. Given the required rate of each user, we find a strategy which bounds the outage probability region for different spectrum-sharing techniques. The corresponding optimal power allocation scheme is a multiuser generalization of the threshold-decision rule for a single-user fading channel. Also discussed is a simpler minimum common outage probability problem under the assumption that the broadcast channel is either not used at all when fading is severe or used simultaneously for all users. Numerical results for the different outage capacity regions are obtained for the Nakagami-m (1960) fading model  相似文献   

5.
Resource Allocation for Wireless Fading Relay Channels: Max-Min Solution   总被引:1,自引:0,他引:1  
Resource allocation is investigated for fading relay channels under separate power constraints at the source and relay nodes. As a basic information-theoretic model for fading relay channels, the parallel relay channel is first studied, which consists of multiple independent three-terminal relay channels as subchannels. Lower and upper bounds on the capacity are derived, and are shown to match, and thus establish the capacity for the parallel relay channel with degraded subchannels. This capacity theorem is further demonstrated via the Gaussian parallel relay channel with degraded subchannels, for which the synchronized and asynchronized capacities are obtained. The capacity-achieving power allocation at the source and relay nodes among the subchannels is partially characterized for the synchronized case and fully characterized for the asynchronized case. The fading relay channel is then studied, which is based on the three-terminal relay channel with each communication link being corrupted by a multiplicative fading gain coefficient as well as an additive Gaussian noise term. For each link, the fading state information is assumed to be known at both the transmitter and the receiver. The source and relay nodes are allowed to allocate their power adaptively according to the instantaneous channel state information. The source and relay nodes are assumed to be subject to separate power constraints. For both the full-duplex and half-duplex cases, power allocations that maximize the achievable rates are obtained. In the half-duplex case, the power allocation needs to be jointly optimized with the channel resource (time and bandwidth) allocation between the two orthogonal channels over which the relay node transmits and receives. Capacities are established for fading relay channels that satisfy certain conditions.  相似文献   

6.
A Model for Correlated Rician Fading Channels Based on a Finite Queue   总被引:1,自引:0,他引:1  
We study the problem of approximating the family of hard-decision frequency-shift keying demodulated correlated flat Rician fading channels via a recently introduced queue-based channel (QBC) model for binary communication channels with memory. For a given ldquodiscretizedrdquo fading channel, we construct a QBC whose noise process is statistically ldquocloserdquo in the Kullback-Leibler sense to the error or noise process that is generated by the fading channel, and the modeling accuracy is evaluated in terms of noise autocorrelation function (ACF) and channel capacity. Numerical results indicate that the QBC provides a good approximation of the fading channels for a wide range of channel conditions. Furthermore, it estimates the noise ACF more accurately than the finite-state Markov models that have been recently studied by Pimentel , while, at the same time, remaining mathematically tractable.  相似文献   

7.
周雯  范立生 《信号处理》2011,27(8):1213-1218
方差是系统容量的一个重要参数,可以用来估计通信系统的中断容量。该文研究了正交频分复用(OFDM)系统在莱斯衰落信道下的容量方差。首先该文建立了多径莱斯信道的模型并且定义了多径莱斯信道的莱斯因子,基于此信道模型推出了一个OFDM系统容量方差新的数学表达式,此表达式以OFDM系统的子载波数、信噪比、信道的多径时延等为参数。基于此表达式,计算机仿真和数值计算研究了信噪比、多径数目、莱斯因子对OFDM系统容量方差的影响。结果表明:计算机仿真和数值计算基本吻合,验证了所推导数学表达式的正确性;系统容量方差与信噪比成正比,与莱斯因子和信道的多径数目成反比。另外,该文以积分的形式给出了任意两个相关莱斯随机变量的联合概率密度函数。   相似文献   

8.
Capacity of MIMO Rician channels   总被引:1,自引:0,他引:1  
This paper presents exact results on the capacity of multiple-input-multiple-output (MIMO) Rician channels when perfect channel state information (CSI) is assumed at the receiver but the transmitter has neither instantaneous nor statistical CSI. It first derives the exact expression for the average mutual information (MI) rate of MIMO Rician fading channels when the fading coefficients are independent but not necessarily identically distributed. The results for the independent and identically distributed (i.i.d.) MIMO Rician and Rayleigh fading channels are also obtained as special cases. These results are derived using a different approach than the one used by Telatar for the i.i.d. Rayleigh case. The complementary cumulative distribution function (CCDF) of the MI is also obtained using a Gaussian approximation. The CDF of MI can serve as an upper bound to the outage probability of nonergodic MIMO Rician channels. Numerical results confirm that for a fixed channel gain, a strong tine-of-sight component decreases the channel capacity due to the lack of scattering.  相似文献   

9.
We propose a scalar upper bound on the capacity region of the isotropic fading vector broadcast channel in terms of the capacity region of a scalar fading broadcast channel. The scalar upper bound is applicable to the broad class of isotropic fading broadcast channels regardless of the distribution of the users' channel magnitudes, the distribution of the additive noise experienced by each user, or the amount of channel knowledge available at the receiver. Using this upper bound, we prove the optimality of the Alamouti scheme in a broadcast setting, extend the recent results on the capacity of nondegraded, fading scalar broadcast channels to nondegraded fading vector broadcast channels, and determine the capacity region of a fading vector Gaussian broadcast channel with channel magnitude feedback. We also provide an example of a Rayleigh-fading broadcast channel with no channel state information available to the receiver (CSIR), where the bound on the capacity region obtained by a naive application of the scalar upper bound is provably loose, because it fails to account for the additional loss in degrees of freedom due to lack of channel knowledge at the receiver. A tighter upper bound is obtained by separately accounting for the loss in degrees of freedom due to lack of CSIR before applying the scalar upper bound.  相似文献   

10.
A simple approximation for the symmetric capacity of Rayleigh fading channels with finite input alphabet and ideal channel state information is proposed in this letter. This approximation is quite tight over all SNR ranges and can be considered as a good alternative for estimating the symmetric channel capacity for both AWGN and Rayleigh fading channels.  相似文献   

11.
On the duality of Gaussian multiple-access and broadcast channels   总被引:5,自引:0,他引:5  
We define a duality between Gaussian multiple-access channels (MACs) and Gaussian broadcast channels (BCs). The dual channels we consider have the same channel gains and the same noise power at all receivers. We show that the capacity region of the BC (both constant and fading) can be written in terms of the capacity region of the dual MAC, and vice versa. We can use this result to find the capacity region of the MAC if the capacity region of only the BC is known, and vice versa. For fading channels we show duality under ergodic capacity, but duality also holds for different capacity definitions for fading channels such as outage capacity and minimum-rate capacity. Using duality, many results known for only one of the two channels can be extended to the dual channel as well.  相似文献   

12.
A discrete-time single-user scalar channel with temporally correlated Rayleigh fading is analyzed. There is no side information at the transmitter or the receiver. A simple expression is given for the capacity per unit energy, in the presence of a peak constraint. The simple formula of VerdÚ for capacity per unit cost is adapted to a channel with memory, and is used in the proof. In addition to bounding the capacity of a channel with correlated fading, the result gives some insight into the relationship between the correlation in the fading process and the channel capacity. The results are extended to a channel with side information, showing that the capacity per unit energy is one nat per joule, independently of the peak power constraint. A continuous-time version of the model is also considered. The capacity per unit energy subject to a peak constraint (but no bandwidth constraint) is given by an expression similar to that for discrete time, and is evaluated for Gauss–Markov and Clarke fading channels.  相似文献   

13.
在多输入多输出(MIMO)系统中,建立空时分组编码模型,在分析瑞利衰落下正交空时分组码接收信噪比的基础上,得到了正交空时分组编码信遗容量的表达式,并采用数值计算的方法对其进行分析论述,得出在接收天线数一定的情况下,增加发送天线数所能得到的信道容量的上界。同时,分析证明,在发送天线数一定时,正交空时分组编码信道容量随接收天线数的增加而增加。在接收天线数一定时,信遗容量也随着发送天线数的增加而增加,但当发送天线数增加到一定数量时容量的增加就变得不十分明显。  相似文献   

14.
In multiuser wireless systems, dynamic resource allocation between users and over time significantly improves efficiency and performance. In this two-part paper, we study three types of capacity regions for fading broadcast channels and obtain their corresponding optimal resource allocation strategies: the ergodic (Shannon) capacity region, the zero-outage capacity region, and the outage capacity region with nonzero outage. We derive the ergodic capacity region of an M-user fading broadcast channel for code division (CD), time division (TD), and frequency division (FD), assuming that both the transmitter and the receivers have perfect channel side information (CSI). It is shown that by allowing dynamic resource allocation, TD, FD, and CD without successive decoding have the same ergodic capacity region, while optimal CD has a larger region. Optimal resource allocation policies are obtained for these different spectrum-sharing techniques. A simple suboptimal policy is also proposed for TD and CD without successive decoding that results in a rate region quite close to the ergodic capacity region. Numerical results are provided for different fading broadcast channels  相似文献   

15.
TCMP-a modulation and coding strategy for Rician fading channels   总被引:3,自引:0,他引:3  
The authors describe TCMP, a novel modulation strategy for Rician fading channels that multiplexes a time domain pilot sequence with trellis-coded data to permit coherent detection. This technique is shown to provide remarkably robust performance in the presence of fading. It is also shown that, when choosing trellis codes for fading channels, time diversity is of greater important than asymptotic coding gain. The motivation for studying this strategy is to find signaling schemes for transmitting data at a 4.8 kb/s rate over a mobile satellite channel with 5-kHz channel spacing  相似文献   

16.
Orthogonal space-time block coding (STBC) is an open-loop transmit diversity scheme that decouples the multiple-input multiple-output (MIMO) channel, thereby reducing the space-time decoding into a scalar detection process. This characteristic of STBC makes it a powerful tool, achieving full diversity over MIMO fading channels, and requiring little computational cost for both the encoding and decoding processes. In this paper, we exploit the single-input single-output equivalency of STBC in order to analyze its performance over nonselective Nakagami fading channels in the presence of spatial fading correlation. More specifically, we derive exact closed-form expressions for the outage probability and ergodic capacity of STBC, when the latter is employed over spatially correlated MIMO Nakagami fading channels. Moreover, we derive the exact symbol error probability of coherent M-PSK and M-QAM, when these modulation schemes are used along with STBC over such fading channels. The derived formulae are then used to assess the robustness of STBC to spatial correlation by considering general MIMO correlation models and analyzing their effects on the outage probability, ergodic capacity, and symbol error probability achieved by STBC.  相似文献   

17.
Consider a multiple-input multiple-output (MIMO) fading channel in which the fading process varies slowly over time. Assuming that neither the transmitter nor the receiver have knowledge of the fading process, do multiple transmit and receive antennas provide significant capacity improvements at high signal-to-noise ratio (SNR)? For regular fading processes, recent results show that capacity ultimately grows doubly logarithmically with the SNR independently of the number of transmit and receive antennas used. We show that for the Gauss-Markov fading process in all regimes of practical interest the use of multiple antennas provides large capacity improvements. Nonregular fading processes show completely different high-SNR behaviors due to the perfect predictability of the process from noiseless observations. We analyze the capacity of MIMO channels with nonregular fading by presenting a lower bound, which we specialize to the case of band-limited slowly varying fading processes to show that the use of multiple antennas is still highly beneficial. In both cases, regular and nonregular fading, this capacity improvement can be seen as the benefit of having multiple spatial degrees of freedom. For the Gauss-Markov fading model and all regimes of practical interest, we present a communication scheme that achieves the full number of degrees of freedom of the channel with tractable complexity. Our results for underspread Gauss-Markov and band-limited nonregular fading channels suggest that multiple antennas are useful at high SNR.  相似文献   

18.
In this paper, we study the performance of a bandwidth efficient space–frequency turbo encoding scheme over wideband channels. Results are presented for simulated wideband MIMO channels consisting of two transmit antennas and up to two receive antennas. In addition, wideband channel measurements undertaken with practical multi‐element antenna structures at both the access point (AP) and mobile terminal (MT) are presented. Analysis is in terms of channel capacity, 10% channel outage capacity and space–frequency iterative decoding for an lEEE802.11a physical layer complaint modem. It is shown when operating with a spectral efficiency of 1.2 bits/s/Hz, the iterative decoded space–time codes comes within approximately 4.7 dB of 10% outage capacity over Rayleigh fading wideband channels with two transmit and two receive antennas. Over measured channels the iterative decoding scheme performs within 7.7 dB 10% of outage capacity. Losses due to channel state information estimation are also investigated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The linear minimum mean-squared-error (LMMSE) criterion can be used to obtain near-far resistant receivers in direct-sequence code-division multiple-access systems. The standard version of the LMMSE receiver (postcombining LMMSE) minimizes the mean-squared error between the filter output and the true transmitted data sequence. Since the detector depends on the channel coefficients of all users, it cannot be implemented adaptively in fading channels due to severe tracking problems. A modified criterion for deriving LMMSE receivers (precombining LMMSE) in fading channels is presented. The precombining LMMSE receiver is independent of the users' complex channel coefficients, and it effectively converts the time-varying Rayleigh fading channel to an equivalent fixed additive white Gaussian noise channel from the point of view of updating the detector. The performance of the LMMSE receivers in fading channels is studied via computer simulations and numerical analysis. The results show that the postcombining LMMSE receiver has potentially larger capacity, but it cannot be used in fast fading channels. The precombining LMMSE receiver has slightly worse capacity than the postcombining LMMSE receiver, but remarkably larger capacity than the conventional RAKE receiver at the signal-to-noise ratios of practical interest  相似文献   

20.
On the capacity of OFDM-based spatial multiplexing systems   总被引:4,自引:0,他引:4  
This paper deals with the capacity behavior of wireless orthogonal frequency-division multiplexing (OFDM)-based spatial multiplexing systems in broad-band fading environments for the case where the channel is unknown at the transmitter and perfectly known at the receiver. Introducing a physically motivated multiple-input multiple-output (MIMO) broad-band fading channel model, we study the influence of physical parameters such as the amount of delay spread, cluster angle spread, and total angle spread, and system parameters such as the number of antennas and antenna spacing on ergodic capacity and outage capacity. We find that, in the MIMO case, unlike the single-input single-output (SISO) case, delay spread channels may provide advantages over flat fading channels not only in terms of outage capacity but also in terms of ergodic capacity. Therefore, MIMO delay spread channels will in general provide both higher diversity gain and higher multiplexing gain than MIMO flat fading channels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号