共查询到20条相似文献,搜索用时 62 毫秒
1.
Using the weighted residual formulation we derive a-posteriori estimates for Discontinuous Galerkin approximations of second order elliptic problems in mixed form. We show that our approach allows to include in a unified way all the methods presented so far in the literature. 相似文献
2.
A residual type a posteriori error estimator is presented and analyzed for Weak Galerkin finite element methods for second order elliptic problems. The error estimator is proved to be efficient and reliable through two estimates, one from below and the other from above, in terms of an $H^1$ -equivalent norm for the exact error. Two numerical experiments are conducted to demonstrate the effectiveness of adaptive mesh refinement guided by this estimator. 相似文献
3.
4.
We give an a posteriori error estimator for low order nonconforming finite element approximations of diffusion-reaction and Stokes problems, which relies on the solution of local problems on stars. It is proved to be equivalent to the energy error up to a data oscillation, without requiring Helmholtz decomposition of the error nor saturation assumption. Numerical experiments illustrate the good behavior and efficiency of this estimator for generic elliptic problems. 相似文献
5.
In this work an a posteriori global error estimate for the Local Discontinuous Galerkin (LDG) applied to a linear second order elliptic problem is analyzed. Using a mixed formulation, an upper bound of the error in the primal variable is derived from explicit computations. Finally, a local adaptive scheme based on explicit error estimators is studied numerically using one dimensional problems.This revised version was published online in July 2005 with corrected volume and issue numbers. 相似文献
6.
New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented. 相似文献
7.
8.
In this article, we study the residual-based a posteriori error estimates of the two-grid finite element methods for the second order nonlinear elliptic boundary value problems. Computable upper and lower bounds on the error in the \(H^1\)-norm are established. Numerical experiments are also provided to illustrate the performance of the proposed estimators. 相似文献
9.
Bustinza Rommel Gatica Gabriel N. Cockburn Bernardo 《Journal of scientific computing》2005,22(1-3):147-185
In this paper we present a new residual-based reliable a posteriori error estimator for the local discontinuous Galerkin approximations of linear and nonlinear diffusion problems in polygonal regions of R
2. Our analysis, which applies to convex and nonconvex domains, is based on Helmholtz decompositions of the error and a suitable auxiliary polynomial function interpolating the Dirichlet datum. Several examples confirming the reliability of the estimator and providing numerical evidences for its efficiency are given. Furthermore, the associated adaptive method, which considers meshes with and without hanging nodes, is shown to be much more efficient than a uniform refinement to compute the discrete solutions. In particular, the experiments illustrate the ability of the adaptive algorithm to localize the singularities of each problem.Mathematics Subject Classifications (1991). 65N30This revised version was published online in July 2005 with corrected volume and issue numbers. 相似文献
10.
11.
12.
In this paper, we propose a multi-scale discontinuous Galerkin (DG) method for second-order elliptic problems with curvilinear unidirectional rough coefficients by choosing a special non-polynomial approximation space. The key ingredient of the method lies in the incorporation of the local oscillatory features of the differential operators into the approximation space so as to capture the multi-scale solutions without having to resolve the finest scales. The unidirectional feature of the rough coefficients allows us to construct the basis functions of the DG non-polynomial approximation space explicitly, thereby greatly increasing the algorithm efficiency. Detailed error estimates for two-dimensional second-order DG methods are derived, and a general guidance on how to construct such non-polynomial basis is discussed. Numerical examples are also presented to validate and demonstrate the effectiveness of the algorithm. 相似文献
13.
14.
We present the first a posteriori error analysis of the so-called hybridizable discontinuous Galerkin (HDG) methods for second-order elliptic problems. We show that the error in the flux can be controlled by only two terms. The first term captures the so-called data oscillation. The second solely depends on the difference between the trace of the scalar approximation and the corresponding numerical trace. Numerical experiments verifying the reliability and efficiency of the estimate in two-space dimensions are presented. 相似文献
15.
We introduce an entirely new class of high-order methods for computational fluid dynamics based on the Gaussian process (GP) family of stochastic functions. Our approach is to use kernel-based GP prediction methods to interpolate/reconstruct high-order approximations for solving hyperbolic PDEs. We present a new high-order formulation to solve (magneto)hydrodynamic equations using the GP approach that furnishes an alternative to conventional polynomial-based approaches. 相似文献
16.
Paul Houston Schötzau Dominik Wihler Thomas P. 《Journal of scientific computing》2005,22(1-3):347-370
In this paper, we develop the a posteriori error estimation of mixed discontinuous Galerkin finite element approximations of the Stokes problem. In particular, we derive computable upper bounds on the error, measured in terms of a natural (mesh-dependent) energy norm. This is done by rewriting the underlying method in a non-consistent form using appropriate lifting operators, and by employing a decomposition result for the discontinuous spaces. A series of numerical experiments highlighting the performance of the proposed a posteriori error estimator on adaptively refined meshes are presented.Paul Houston - Funded by the EPSRC (Grant GR/R76615).
Thomas P. Wihler - Funded by the Swiss National Science Foundation (Grant PBEZ2-102321).
This revised version was published online in July 2005 with corrected volume and issue numbers. 相似文献
17.
Local Discontinuous Galerkin Finite Element Method and Error Estimates for One Class of Sobolev Equation 总被引:1,自引:0,他引:1
In this paper we present a numerical scheme based on the local discontinuous Galerkin (LDG) finite element method for one class of Sobolev equations, for example, generalized equal width Burgers equation. The proposed scheme will be proved to have good numerical stability and high order accuracy for arbitrary nonlinear convection flux, when time variable is continuous. Also an optimal error estimate is obtained for the fully discrete scheme, when time is discreted by the second order explicit total variation diminishing (TVD) Runge-Kutta time-marching. Finally some numerical results are given to verify our analysis for the scheme. 相似文献
18.
19.
Paola F. Antonietti Marco Sarti Marco Verani Ludmil T. Zikatanov 《Journal of scientific computing》2017,70(2):608-630
In this paper we design and analyze a uniform preconditioner for a class of high-order Discontinuous Galerkin schemes. The preconditioner is based on a space splitting involving the high-order conforming subspace and results from the interpretation of the problem as a nearly-singular problem. We show that the proposed preconditioner exhibits spectral bounds that are uniform with respect to the discretization parameters, i.e., the mesh size, the polynomial degree and the penalization coefficient. The theoretical estimates obtained are supported by numerical tests. 相似文献
20.
We study a posteriori error estimates in the energy norm for some parabolic obstacle problems discretized with a Euler implicit time scheme combined with a finite element spatial approximation. We discuss the reliability and efficiency of the error indicators, as well as their localization properties. Apart from the obstacle resolution, the error indicators vanish in the so-called full contact set. The case when the obstacle is piecewise affine is studied before the general case. Numerical examples are given. 相似文献