首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用TEM,EDS,HREM 等测试手段,对液体压力浸渗法制备的Al2O3- SiO2(sf)/ZL109复合材料的界面结构以及界面反应机理进行了观察和分析,结果表明:多晶Al2O3- SiO2纤维和基体金属在复合材料的高温制备过程中发生了化学反应,产生了尖晶石MgAl2O4;MgAl2O4沿复合材料界面呈颗粒状分布,形成了非连续分布的反应结合型界面结构。  相似文献   

2.
本文以TEM和EDS为主要分析手段,研究了不同颗粒增强的Al-4%Mg复合材料的界面及其基体中的微观结构,探讨了它们的形成原因。结果表明:SiO_2颗粒与基体间为反应结合,Al_2O_3和SiC则基本上为机械结合。  相似文献   

3.
本文以TEM和EDS为主要分析手段,研究了不同颗粒增强的Al-4%Mg复合材料的界面及其基体中的微观结构,探讨了它们的形成原因。结果表明:SiO_2颗粒与基体间为反应结合,Al_2O_3和SiC则基本上为机械结合。  相似文献   

4.
Al2O3短纤维Al—1/5wt%Mg复合材料的界面研究   总被引:5,自引:0,他引:5  
实验研究了液态浸渗后直接挤压工艺制备的Al2O3短纤维/Al-1.5wt%Mg复合材料的界面特点。发现;基体中的Mg在纤维/基体界面处偏聚,发生了界面反应;反应产物MgAl2O4,其厚度约为20nm,远小于由Metcalfe定义的界面反应层第一临界厚度;界面反应产生MgAl2O4的存在,为其体与纤维间提供了较好的结合强度。  相似文献   

5.
研究了用Y2O3-Al2O3-SiO2-Si3N4,钎料对氮化硅复相陶瓷的连接。对连接界面进行了SEM,EPMA和XRD分析,接头强度随着保温时间,连接温度的增加而逐渐增加。在达到峰值后,连接强度逐渐降低,在YAS钎料中添加氮化硅,可以降低接头界面的热应力,改善接头强度。  相似文献   

6.
用SEM动态拉伸装置观察了δ-Al2O3短纤维增强Al-5.5Mg合金复合材料微观断裂过程,分析了断裂机制,根据动态拉伸结果计算了界面剪切强度。  相似文献   

7.
界面结构对SiCf/Al复合材料性能和声发射行为的影响   总被引:1,自引:0,他引:1  
运用高分辨场发射扫描电镜(FE-SEM)和声发射(AE)测试研究了SiC纤维铝基复合材料的不同界面组成和界面产物及其对复合材料性能和AE行为的影响发现富碳自理的SiCf/Al生成Al4C3脆性界面,在伸过程中界面脆断产生许多中幅AE信号,而富SiO2处理的SiCf/Al生成韧工较高的富氧产物,界面强度较高,在形变过程中不易发生界面断裂,不产生中幅AE信号。  相似文献   

8.
本文对Al2O3基陶瓷复合材料Al2O3-ZrO2-SiCw进行了干摩擦磨损试验,并运用了SEM,TEM和XRD等手段对其显微结构、力学性能及它们与GCr15钢对摩时的摩擦磨损行为进行了系统分析,在此基础上深入探讨了SiC面增韧补强作用对复俣材料的摩擦磨损性能的影响。  相似文献   

9.
CaO—MgO—Fe2O3—Al2O3—SiO2渣系玻璃晶化动力学   总被引:4,自引:0,他引:4  
根据玻璃形成动力学理论,计算了CaO-MgO-Fe2O3-Al2O3-SiO2渣系中成核速率(I)和晶体长大速度(U),获得晶体形成的最佳温度,研究了热处理温度对CaO-MgO-Fe2O3-Al2O3-SiO2渣系晶体的影响,计算的晶体形成的最佳温度结果表明与该体系的最佳热处理温度一致。  相似文献   

10.
MgO—B2O3—SiO2—Al2O3—CaO中含硼组分析晶动力学   总被引:2,自引:0,他引:2  
根据玻璃形成动力学理论,计算了MgO-B2O3-SiO2-Al2O3-CaO渣系中含硼组分2MgO·B2O3的成核速度(I)和晶体长大速度(U),获得了2MgO·B2O3晶体形成的最佳温度.采用化学分析、X射线衍射分析(XRD)和差热分析(DTA)等方法研究了热处理温度对MgO—B2O3—SiO2—Al2O3—CaO渣系硼提取率的影响.结果表明:硼渣最佳热处理温度与2MgO·B2O3晶体形成最佳温度一致。  相似文献   

11.
本以SiC板粒、ZrOCl2·8H2O、AlCl3和Y(MO)3为原料,利用共沉淀和热压烧结工艺,制备SiC板粒/Y-TZP和(含Al2O3)SiC板粒/Y-TZP复合材料。测试了材料的室温和高温力学性能。研究了添加Al2O3对SiC板粒/Y-TZO复合材料的影响。结果表明,SiC板粒/Y-TZP复合材料与Y-TZP复合材料与Y-TZP陶瓷相比,其室温强度和韧性出现明显下降,高温强度也没有改善;  相似文献   

12.
Al2O3—SiO2—TiO2复合陶瓷薄膜的制备与结构   总被引:1,自引:0,他引:1  
曾智强  萧小月 《功能材料》1997,28(6):599-603
本文利用Sol-Gel法制备了Al2O-SiO2-TiO2复合陶瓷薄膜,讨论了主要内容是体系成分(Al:Si:Ti摩尔比)对落膜制备过程及结构的影响。通过分步水解法可以得到稳定的Al2O3-SiO2-TiO2复合溶胶,进而制备复合陶瓷薄膜。组分间的静电作用是溶胶凝结的原因。三组分中,Si/Ti摩尔比是决定溶胶稳定性的主要因素。通过XRD对薄膜的相组成进行了分析,表明复合薄膜由Al4Ti2SiO12  相似文献   

13.
SiC纤维补强微晶玻璃基复合材料的界面结合   总被引:5,自引:0,他引:5  
本文通过SiC纤维对LCAS(Li2O-CaO-Al2O3-SiO2)和MAS(MgO-Al2O3-SiO2)微晶玻璃的补强,观察和分析了在不同复合系统中纤维与基体的界面结合。在SiC纤维/LCAS微晶玻璃复合系统中,发现纤维与基体之间有一中间界面层,它主要是在复合材料的烧结过程中通过扩散形成,并且于1200℃时在界面上形成富C层。SiC纤维/MAS微晶玻璃基复合材料由于在烧结过程中有化学反应发生  相似文献   

14.
晶内型Al2O3—SiC纳米复合陶瓷的制备   总被引:36,自引:5,他引:31  
研究了沉淀法制备Al2O3-SiC纳米复合陶瓷的工艺过程,利用Al2O3从γ相到α相的蠕虫状生长过程,使大部分纳米SiC颗粒位于Al2O3晶粒内,用沉淀法制得的、含有5vol%SiC的Al2O3-SiC纳米复合陶瓷,其强度为467MPa,韧性为4.7MPa.m^1/2,与一般的Al2O3陶瓷相比有较大的提高,显示了沉淀法制备Al2O3-SiC纳米复合陶瓷的优点。  相似文献   

15.
本文探讨了Si及α-Al2O3超细粉对Al2O3-ZrO2-C系材料显微结构的影响。认为在Al2O3-ZrO2-C系材料中同时加入Si和α-Al2O3超细粉,Si粉除了与C生成了SiC纤维外,其反应产物SiO2还与α-Al2O3超细粉及ZrO2生成了莫来石(A3S2)和Al2O3-ZrO2-SiO2(AZS)固溶体,这些新生成的矿物相对试样的显微结构产生重要的作用。  相似文献   

16.
根据各种助烧剂在相应的氧氨玻璃中的作用,通过晶界相预合成和改变Al2O3和MgO的添加量,研究了不同La/Y比及Al2O3和MgO含量对SiC(w)/Si3N4复合材料力学性能的影响,从而实现了对晶界和界面的调控,优化了助烧剂体系和制备工艺,达到了最佳的晶须增韧强效果。  相似文献   

17.
利用EPMA和XRD的分析方法,研究了Si_3N_4-Al_2O_3-ZrO_2系陶瓷材料表面氧化层组成。结果表明,Si_3N_4-Al_2O_3-ZrO_2系陶瓷材料表面氧化层是由方石英相、ZrSiO_4相和含有Al_2O_3、CaO等的SiO_2玻璃相所组成,其中SiO_2玻璃相中Al_2O_3、CaO等的含量,随着氧化时间的增加而逐渐增加。  相似文献   

18.
用扫描电镜观察了莫来石、r-Al2O3两种短纤维增强Al-12%Si复合材料的拉伸变形和断裂过程,结果表明:对莫来石纤维增强Al-12%Si复合材料,与外加载荷方向成小角度的纤维是裂纹优先萌生的地方;r-Al2O3纤维增强Al-12%Si事材料抵抗断裂能力小于晨来石纤维增强Al-12%Si复合材料;提出了莫来石纤维增强Al-12%Si复合材料的断裂模式。  相似文献   

19.
流态化CVD制备TiO2—Al2O3复合粒子   总被引:6,自引:0,他引:6  
本文探讨了流态化CVD反应器中Ti(OC4H9)4水解制备TiO2-Al2O3复合粒子新工艺,借助于SEM、TEM、BET、XRF和EPMA等现代测试手段研究了复合粒子结构和包覆过程特征。结果表明,在流态化CVD反应器中Al2O3超细颗粒以团聚体形式存在,TiO2包覆量随Ti(OC4H9)4进料浓度升高而增加,但反应温度影响不大;在包覆过程中,同时存在成核和成膜,成核包覆使复合粒子比表面积增加,成  相似文献   

20.
本文采用机械混合Si3N4,AlN,Al2O3,Dy2O3和纳米β-SiC粉料,通过热压烧结,制备了10wt%纳米SiC颗粒增强,α-SiAlON复合材料,力学性能测试表明,在室温时复合材料的维氏硬度,压痕断裂韧性和三点弯曲强度比单相α-SiAlON略高,但复合材料的三点弯曲强度可以保持到1000℃,其值为时单相α-SiAlON的两倍,断口形貌表明复合材料的晶粒尺寸比单相α-SiAlON的小,这两  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号