首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dielectric properties, dielectric constant (k), dielectric loss (tan δ) and a.c. conductivity (σ) in the solution-grown single crystals of RbNO3 are presented from room temperature to about 200°C covering the frequency range 102 to 105 Hz. A broad peak observed in tan δ-frequency data between 103 and 105Hz is thought to be due to impurity-vacancy dipoles. The sudden rise of three parameters near 160°C is attributed to the known phase transition from trigonal to CsCl structure.  相似文献   

2.
Bamboo fiber-reinforced epoxy composites were fabricated with untreated and alkali treated bamboo fibers. Dielectric, electric modulus, ac, and dc conductivity studies were carried out to rationalize the dielectric behavior of bamboo/epoxy composites. Composites of two fiber orientation parallel and perpendicular to the electric field were prepared. The dielectric behavior and electric modulus spectra of the composites were characterized using standard impedance analyzer. Dielectric properties were analyzed as a function of frequency (95 Hz–2 MHz) for temperatures in the range from 30 to 180 °C. Real part of dielectric constant (ε′), conductivity, and dielectric dissipation factor (tan δ) of 0° oriented bamboo/epoxy composites were higher than that of 90° oriented composites. Conductivity activation energy, tan δ, ε′, and volume resistivity decreased with increase in frequency at all the temperatures under study. Mercerization reduces the water absorption in bamboo fibers and thus improves corresponding dielectric properties of composites. Relaxation times 39.80 μs and 258.5 μs for 0° and 90° oriented bamboo/epoxy composites were calculated respectively from the relaxation peaks observed in electric modulus spectra at 180 °C.  相似文献   

3.
The polycrystalline samples of Ca4Bi2Ti4Nb6O30 (herein designated CBTN) were synthesized by the conventional ceramic method. Preliminary X-ray structural study of the compound showed the formation of a single phase solid solution having orthorhombic structure in the paraelectric phase. Measurements of the dielectric constant (ε) and dielectric loss (tan δ) as a function of temperature (−180–200°C) at 1 kHz and 10 kHz and also as a function of frequency (102 Hz to 104 Hz) at five different temperatures [−180°C, −40°C, − 10°C 26°C (room temperature) and 75°C] have shown a dielectric anomaly and a phase transition at − 13 ±1°C in CBTN.  相似文献   

4.
The effect of high-energy (50 MeV) Li3+ ion beam irradiation on polypropylene (PP) film has been studied in the fluence range 2.4 × 1012−l.5 × 1014 ions/cm2. The a.c. electrical properties of PP films were measured in the frequency range from 0.05– 100 kHz, and at temperature range between 30 and 140°C. This study indicates two peaks at 60°C and 120°C with comparatively high magnitudes. There is an exponential increase in conductivity with log of frequency and the effect is significant at higher fluences. The loss factor (tan δ) vs frequency plot suggests that PP film based capacitors may be useful below 10 kHz. The capacitance is constant over a wide temperature range up to 130°C. FTIR spectra of the PP films before and after irradiation indicate that intensity of C-H stretching vibration at 2900 cm−1 is modified. The presence of many new peaks with the increase of fluence suggests the formation of alkanes and alkynes which might be responsible for the observed changes in the dielectric and electrical properties of PP films.  相似文献   

5.
Strontium tartrate trihydrate (STT) crystals have been grown in silica hydrogel. Various polarization mechanisms such as atomic polarization of lattice, orientational polarization of dipoles and space charge polarization in the grown crystals have been understood using results of the measurements of dielectric constant (έ′) and dielectric loss (tan δ) as functions of frequency and temperature. Ion core type polarization is seen in the temperature range 75–180°C, and above 180°C, there is interfacial polarization for relatively lower frequency range. One observes dielectric dispersion at lower frequency presumably due to domain wall relaxation.  相似文献   

6.
Ferroelectromagnetic composites with compositions, X Ni0·5Zn0·5Fe1·95O4−δ + (1 − X) Ba0·8Pb0·2TiO3, in which X varies as 0, 0·005, 0·010, 0·015, 0·020, 0·040, 0·060, 0·080 and 1 in mole %, were prepared by conventional ceramic double sintering process. The presence of two phases was confirmed by X-ray diffraction. The temperature variation of dielectric constant, ɛ′, dielectric loss, tan δ, d.c. conductivity, a.c. conductivity, elastic and anelastic behaviour of ferrite-ferroelectric composites were studied in the temperature range 30–350°C. The a.c. conductivity measurements on these composites in the frequency range 100 Hz-1 MHz at room temperature reveal that the conduction mechanism is due to small polaron hopping. The dielectric and elastic data were discussed in the light of phase transitions.  相似文献   

7.
In this paper, the structural and dielectric properties of BNO (BiNbO4) was investigated as a function of the external RF frequency and temperature. The BNO Ceramics, prepared by the conventional mixed oxide method and doped with 3, 5 and 10 wt. % Bi2O3–PbO were sintered at 1,025 °C for 3 h. The X-ray diffraction patterns of the samples sintered, shown the presence of the triclinic phase (β-BNO). In the measurements obtained at room temperature (25 °C) was observed that the largest values of dielectric permittivity (ε r ) at frequency 100 kHz, were for the samples: BNO5Bi (5 wt. % Bi2O3) and BNO5Pb (5 wt. % PbO) with values ε r ~ 59.54 and ε r ~ 78.44, respectively. The smaller values of loss tangent (tan δ) were for the samples: BNO5Bi and BNO3Pb (3 wt. % PbO) with values tan δ ~ 5.71 × 10−4 and tan δ ~ 2.19 × 10−4, respectively at frequency 33.69 MHz. The analysis as a function of temperature of the dielectric properties of the samples, obtained at frequency 100 kHz, showed that the larger value of the relative dielectric permittivity was about ε r ~ 76.4 at temperature 200 °C for BNO5Pb sample, and the value smaller observed of dielectric loss was for BNO3Bi sample at temperature 80 °C, with about tan δ ~ 5.4 × 10−3. The Temperature Coefficient of Capacitance (TCC) values at 1 MHz frequency, present a change of the signal from BNO (−55.06 ppm/°C) to the sample doped of Bi: BNO3Bi (+86.74 ppm/°C) and to the sample doped of Pb: BNO3Pb (+208.87 ppm/°C). One can conclude that starting from the BNO one can increase the doping level of Bi or Pb and find a concentration where one have TCC = 0 ppm/°C, which is important for temperature stable materials applications like high frequency capacitors. The activation energy (H) obtained in the process is approximately 0.55 eV for BNO sample and increase with the doping level. These samples will be studied seeking the development ceramic capacitors for applications in radio frequency devices.  相似文献   

8.
Dielectric constant ε, loss tan δ, a.c. conductivity Σ and dielectric breakdown strength of NaF-B2O3 glasses doped with certain transition metal ions (viz. Cu2+, VO2+, Ti4+ and Mn4+) are studied in the frequency range 102-107 Hz and in the temperature range 30–250°C. The values of ε, tan δ, Σa.c. are found to be the highest for Cu2+ doped glasses and the lowest for Mn4+ doped glasses. Activation energy for a.c. conduction and the value of dielectric breakdown strength are found to be the lowest for Cu2+ doped glasses and the highest for Mn4+ doped glasses. With the help of infrared spectra, increase in the values of ε and tan δ of these glasses with frequency and temperature are identified with space charge polarization. An attempt has been made to explain a.c. conduction phenomenon on the basis of quantum mechanical tunneling model (QMT)/carrier barrier hopping model.  相似文献   

9.
Effect of ZnO addition on properties of cordierite-based glass-ceramics   总被引:1,自引:0,他引:1  
The influences of addition of ZnO on sintering, crystallization behavior and properties of cordierite-based glass-ceramics were investigated. Results show that with increasing ZnO content, the batch melting temperature, glass transition temperature and crystallization temperature all decrease. Addition of ZnO can greatly improve the sinterability of the glass powders and alter the type of the crystalline phases. Addition of 1.5 wt% ZnO seems to be reasonable. Thermal expansion coefficients (TCEs) of samples increase with increasing ZnO contents. The density was found to be an important factor affecting the dielectric loss of the samples. Dielectric constant and TCEs of the sintered bulk samples were found to depend on their relative densities and crystalline phases. The samples doped with 1.5–3.0 wt% ZnO sintered at 950 °C has a low dielectric constant (5.0–5.2), a low dielectric loss (≤0.0018) and a low thermal expansion coefficient (3.6–4.8 × 10−6 K−1), which are promising electronic packaging materials.  相似文献   

10.
The dielectric, thermal and mechanical properties of CaO–SiO2–B2O3 ternary system ceramics by solid-phase method have been carried out and quantitive analysis been examined by X-ray diffraction (XRD) patterns. The results showed that the major crystalline phase of CaO–SiO2–B2O3 ternary system ceramics was wollastonite (about 90 wt%) which existed at the temperature ranging from 950 to 1,100 °C. It is also observed that wollastonite could be transformed to pseudowollastonite at 1,200 °C. In addition, with increase in calcination temperature, the amount of wollastonite increases. When the sintering temperature is at 1,100 °C, the amount of wollastonite has a maximum value of 92.7 wt%. Accordingly, CaO–SiO2–B2O3 ternary system ceramics achieved excellent properties at 1,100 °C, such as dielectric constant of 8.38, dielectric loss of 1.51 × 10−3 at 1 MHz, linear thermal-expansion coefficient (300 K) of 6.68 × 10−6/K, bending strength of 121.75 Mpa. Analysis of the mechanical and dielectric properties showed that the measured bending strength, dielectric constant and loss of CaO–SiO2–B2O3 ternary system ceramics can be substantially modified and improved by controlling the sintering temperature, in particular due to the amount of wollastonite crystalline phase and size of grains.  相似文献   

11.
A series of styrene–butadiene rubber (SBR) composites have been prepared with different weight ratios of polyacetylene based conducting carbon black (CCB) (0–90 phr). The SBR–CCB systems are characterized for dimensional stability which is enhanced by increasing the CCB loading because of enhancement in polymer-filler interaction. The electrical properties such as dielectric constant (εr), dissipation factor (tan δ) and dielectric loss (ε″) of the composites have been studied. The influence of different loading of CCB (0–90 phr), frequency of ac (100 Hz–30 MHz) and temperature (25–75 °C) on the electrical properties was studied. An increase in dielectric constant and tan δ of the SBR composites was observed with increase in CCB content and ac frequency. This is due to enhancement of filler–filler interaction and the increase in continuity of conducting phase. The surface morphology has been studied using scanning electron microscopy (SEM).  相似文献   

12.
Barium titanate (BaTiO3) thin films doped with Mn (0.1–1.0 at%) were prepared by r.f. magnetron sputtering technique. Oxygen/argon (O2/Ar) gas ratio is found to influence the sputtering rate of the films. The effects of Mn doping on the structural, microstructural and electrical properties of BaTiO3 thin films are studied. Mn-doped thin films annealed at high temperatures (700 °C) exhibited cubic perovskite structure. Mn doping is found to reduce the crystallization temperature and inhibit the grain growth in barium titanate thin films. The dielectric constant increases with Mn content and the dielectric loss (tan δ) reveals a minimum value of 0.0054 for 0.5% Mn-doped BaTiO3 films measured at 1 MHz. The leakage current density decreases with Mn doping and is 10−11 A/cm−2 at 6 kV/cm for 1% Mn-doped thin films.  相似文献   

13.
To meet the demands of high power and high-speed propagation of the signal for very large scale integration, a series of glass/ceramic composites were prepared using electronic ceramics process from borosilicate glass with Sr-celsian, which contains 30, 40, 50, 60, 70 wt% ceramic. The phase and microstructural evolution of the composites were characterized by XRD and SEM. The properties of the composites were also measured. Results show that the thermal expansion coefficient, dielectric constant and hardness of the composites increase with an increase content of Sr-celsian. However, the dielectric loss decreases with increasing Sr-celsian content. For the composites with ≧ 60 wt% Sr-celsian fired at 850–900°C, formation of α-quartz and cristobalite in the composites during the sintering process has bad effect on thermal expansion, but has little effect on the values of dielectric properties of the composites. The obtained composites exhibit low dielectric constant (5.2–5.8), low dielectric loss (⩽ 0.25%), low thermal expansion coefficient (4.4–6.2 × 10−6°C−1) and low-temperature sintering behavior (⩽900 °C), which suit for electronic packaging field.  相似文献   

14.
Some garnets collected from the Kothagudem area of Khammam district in Andhra Pradesh were characterized by chemical analysis. The results show the garnets to be of almandine (Fe+2 3 Al2Si3O12) pyrope (Mg3Al2Si3O12) group. Dielectric constant (ɛ) and dielectric loss (tanδ) were measured as a function of frequency and temperature in the frequency range of 100 Hz to 100 KHz and from room temperature to 400°C. The room temperature measurement was extended to 10 MHz, AC conductivity was calculated from the data on ε and tan δ. DC conductivity was also measured.  相似文献   

15.
Polyvinyl alcohol (PVA)–polyethylene glycol (PEG) based solid polymer blend electrolytes with magnesium nitrate have been prepared by the solution cast technique. Impedance spectroscopic technique has been used, to characterize these polymer electrolytes. Complex impedance analysis was used to calculate bulk resistance of the polymer electrolytes. The a.c.-impedance data reveal that the ionic conductivity of PVA–PEG–Mg(NO3)2 system is changed with the concentration of magnesium nitrate, maximum conductivity of 9·63 × 10 − 5 S/cm at room temperature was observed for the system of PVA–PEG–Mg(NO3)2 (35–35–30). However, ionic conductivity of the above system increased with the increase of temperature, and the highest conductivity of 1·71 × 10 − 3 S/cm was observed at 100°C. The effect of ionic conductivity of polymer blend electrolytes was measured by varying the temperature ranging from 303 to 373 K. The variation of imaginary and real parts of dielectric constant with frequency was studied.  相似文献   

16.
Low temperature co-fired ceramic (LTCC) was prepared by sintering a glass selected from CaO–SiO2–B2O3 system, in which 0.5 wt% P2O5 and 0.5 wt% ZnO were added to optimize the preparation conditions. The glass powder and sintered bodies were characterized by different analytical techniques such as TG-DTA analysis, X-ray diffraction and Scanning electron microscopy. It was found that the optimal sintering temperature was 820°C based on the microstructure and the properties of sintering bodies, and then the major phases of the LTCC were CaSiO3, CaB2O4 and SiO2. The obtained products, with dielectric constant about 6.5, dielectric loss about 2 × 10−3 at 30 MHz and coefficient of thermal expansion about 8 × 10−6 °C−1 between 20 and 400°C, are supposed to be suitable for application in wireless communications.  相似文献   

17.
This paper reports the d.c. conductivity behaviour of milled carbon fibre reinforced polysulphide modified epoxy gradient composites. Milled carbon fibre reinforced composites having 3 vol. % of milled carbon fibre and poly sulphide modified epoxy resin have been developed. D.C. conductivity measurements are conducted on the graded composites by using an Electrometer in the temperature range from 26°C to 150°C. D.C. conductivity increases with the increase of distance in the direction of centrifugal force, which shows the formation of graded structure with the composites. D.C. conductivity increases on increase of milled carbon fibre content from 0·45 to 1·66 vol.%. At 50°C, d.c. conductivity values were 1·85 × 10−11, 1·08 × 10−11 and 2·16 × 10−12 for samples 1, 2 and 3, respectively. The activation energy values for different composite samples 1, 2 and 3 are 0·489, 0·565 and 0·654 eV, respectively which shows decrease in activation energy with increase of fibre content.  相似文献   

18.
Pellets of ceramic Na1−xKxNbO3 (x = 0, 0.2 and 0.5), were prepared by conventional solid-state reaction method. Prepared samples were characterized using XRD and SEM. The frequency and temperature variation of dielectric constant, loss tangent and dielectric conductivity of prepared samples were measured in the frequency range from 10 KHz-1 MHz, and in the temperature range from 50–250°C for x = 0.2 and 0.5, and between 50 and 480°C for x = 0 compositions. It was observed that the dielectric constant and loss tangent decrease, and conductivity increases with increasing frequency. Near the transition temperature the material shows anomalous behaviour for the observed properties, and the peaks of dielectric constant and loss tangent were observed shifting towards lower temperature with increasing frequency.  相似文献   

19.
A new polymer-ceramic composite was prepared using PTFE and low loss Sr2ZnSi2O7. The dielectric properties of the composite were studied in the microwave and radiofrequency ranges. The relative permittivity (εr) and dielectric loss (tan δ) increased with the filler loading from 0.10 to 0.50 volume fractions (vf). The observed values of εr, thermal conductivity and coefficient of thermal expansion (CTE) were compared with the corresponding theoretical predictions. The ability of the composite towards moisture absorption resistance was studied as a function of filler loading. It was also found that the variation of εr was less than 2% in the temperature range 25–90 °C, at 1 MHz. For a filler content of 0.50 vf, the PTFE/Sr2ZnSi2O7 composite exhibited εr = 4.4, tan δ = 0.003 (at 4–6 GHz), CTE = 38.3 ppm/°C, thermal conductivity = 2.1 W/mK and moisture absorption = 0.09 wt%.  相似文献   

20.
The (1−x) Ni0.92Co0.03Mn0.05Fe2O4 + (x) BaTiO3 magnetoelectric (ME) composite have been prepared using conventional double sintering ceramic process where x varies as 1.00, 0.85, 0.70, 0.55 and 0.00. The presence of both phases has been confirmed by X-ray diffraction and the microstructure study will be carried out by SEM technique. The dc resistivity and thermo-emf of the samples have been studied with variation in temperature. The variation of dielectric constant (έ) and loss tangent (tan δ) will be measured in the frequency range 100 Hz–1 MHz. The ac conductivity has been derived from dielectric constant (έ) and loss tangent (tan δ). The static value of magnetoelectric conversion factor dc (ME)H has been studied as a function of intensity of magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号