首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
乳胶+PVA体系水基流延成型99氧化铝陶瓷材料   总被引:1,自引:0,他引:1  
研究了乳胶+PVA复合粘结剂体系水基流延浆料制备99氧化铝陶瓷基片.通过研究浆料pH值、分散剂、粘结剂的比例等因素对水基流延浆料流变学性能的影响,得到了水基流延浆料的最佳配比范围.当pH值为9.0时,分散剂PAA含量为粉料的0.8%(质量分数)时能获得固含量为55vol%、稳定分散的氧化铝浆料.研究表明PVA与乳胶的化学相容性好,采用两种粘结剂复合,可以互补不足.加入复合粘结剂4.5%(质量分数) (乳胶:PVA=7:3),制备出的99氧化铝素坯片其厚度可在50~1000 μm之间进行调控,素坯相对密度可以达到56%左右.制备的流延片在烧结温度1650 ℃、保温2 h的条件下获得了相对密度为98.5%、平整、半透明的99氧化铝陶瓷基片.  相似文献   

2.
水系流延氧化铝基片技术研究   总被引:1,自引:0,他引:1  
研究了氧化铝的水系流延技术.研究表明通过使用聚丙烯酸(PAA)作为分散剂、聚乙烯醇(PVA)作为粘结剂、聚乙二醇(PEG)作为塑性剂、控制浆料pH值为9.0~10.0可制备出具有稳定分散、有适当黏度的浆料.该浆料流延、干燥后可以得到表面光滑、无裂纹、组分均匀、强度高、柔韧性好的流延坯片.烧结后所得到的99.5Al2O3陶瓷基片表面光滑,平整、烧结致密度高达到99%.  相似文献   

3.
用超细氧化铝粉体制备氧化铝陶瓷的烧结工艺研究   总被引:1,自引:1,他引:0  
以超细氧化铝粉体为原料,采用常压烧结工艺制备了氧化铝陶瓷.通过对烧结体断面显微结构的分析,以及对烧结体的线收缩率、密度和残余气孔率的测定,研究了烧结温度对坯体烧结致密化性能的影响和分散剂种类对烧结体残余气孔率的影响.结果表明,分散剂的种类对烧结体的残余气孔率影响较大,其效果由大到小依次为PAA-NH4,和阿拉伯树胶>PAA-NH4>硅溶胶和PAA-NH4>硅溶胶>阿拉伯树胶;超细氧化铝粉体的致密化转变温度为1400℃左右,最终烧结温度为1550℃左右.  相似文献   

4.
以Li1 x-yNb1-x-3yTix 4yO3微波介质陶瓷为原料,聚乙烯醇水溶液为粘结剂,乙二醇为增塑剂,聚羧酸铵盐为分散剂,通过水基流延成型工艺制备出了微观结构均匀的陶瓷素坯膜.通过对陶瓷粉体Zeta电位的考察研究了在水溶液中的粉体表面的带电情况.对陶瓷浆料的流变性进行了研究,考察了分散剂对浆料粘度的影响.最后对成型后陶瓷膜片的微观结构进行了观察.结果表明,添加分散剂后,Li1 x-yNb1-x-3yTix 4yO3陶瓷粉体在水溶液中的等电点由pH 3移动到pH 2.4,并且粉体的Zeta电位有大幅度的提高.Li1 x-yNb1-x-3yTix 4yO3微波介质陶瓷水基流延成型浆料为典型的假塑性流体,并且不存在触变性,满足流延成型工艺的要求.当分散剂的添加量为0.2wt%时,浆料的粘度最低.扫描电镜观察表明,水基流延成型后陶瓷素坯膜的微观结构均匀.  相似文献   

5.
研究了两种分散剂PMAA-NH4和PMAA-Na对浆料稳定性、流变性、固相含量、坯体强度和坯体显微结构的影响.结果表明:两种分散剂均能减少陶瓷浆料中的颗粒团聚,使颗粒分散更均匀,并制得了高性能氧化铝陶瓷基片.  相似文献   

6.
利用水基流延法,选用纯丙乳液作为粘结剂,成功制备出表面光滑、结构均匀、柔韧性良好、强度较高的Al2O3生带材料,并发现当分散剂聚丙烯酸铵(PAA-NH4)含量为2.5%(质量分数)、粘结剂纯丙乳液用量为27%~28%(体积分数)、pH值为9.5~10时可制备出稳定性良好、流动性适宜的α-Al2O3的水基流延浆料。对纯丙乳液进行了DTA和TGA热分析,在此基础上确定流延素片的排胶温度在500℃;将该工艺制备的α-Al2O3流延素片在1650℃并保温2h的烧结条件下,获得了强度和致密度都较高的烧结体,其中烧结较好的流延片的相对密度达到94.5%。  相似文献   

7.
研究了Li1.075Nb0.625Ti0.45O3微波介质陶瓷的水基流延成型工艺,制备出了分散性良好的,适合流延成型的水基浆料.重点研究了浆料的固相含量对浆料的流变行为以及成型后膜片的拉伸性能和孔隙率分布的影响.结果表明,随着固相含量的增加,流延浆料由牛顿型流体逐渐转变为剪切变稀型流体,浆料的粘度急剧增加,并且浆料不存在的触变性.对膜片的拉伸性能测试表明,随着浆料固相含量的增加,膜片的拉伸强度有所增大,但是断裂伸长率不断降低.膜片的孔隙率随着固相含量的增大而降低,膜片的密度有所增加.最后采用SEM对烧结前后的流延膜片进行了表征.  相似文献   

8.
水基流延工艺制备氧化铝生带材料研究   总被引:2,自引:0,他引:2  
利用水基流延法,选用纯丙乳液作为粘结剂,成功制备出表面光滑、结构均匀、柔韧性良好、强度较高的Al2O3生带材料,并发现当分散剂聚丙烯酸铵(PAA-NH4)含量为2.5%(质量分数)、粘结剂纯丙乳液用量为27%~28%(体积分数)、pH值为9.5~10时可制备出稳定性良好、流动性适宜的α-Al2O3的水基流延浆料.对纯丙乳液进行了DTA和TGA热分析,在此基础上确定流延素片的排胶温度在500℃;将该工艺制备的α-Al2O3流延素片在1650℃并保温2 h的烧结条件下,获得了强度和致密度都较高的烧结体,其中烧结较好的流延片的相对密度达到94.5%.  相似文献   

9.
采用经过氧化改性后的木薯淀粉作为凝固剂进行氧化铝陶瓷原位凝固成型研究。研究了氧化淀粉添加量对陶瓷浆料流变特性以及成型素坯的密度、干坯强度的影响,测定了经1700℃烧结后瓷体的密度和强度。结果表明:当在固相体积分数为55%的氧化铝浆料中加入0.5%~1.5%(质量分数,下同)的氧化淀粉时,淀粉.氧化铝浆料的表观粘度随氧化淀粉添加量的增大而提高,但均小于0.4Pa‰制备出的坯体致密、均匀,体积密度大于60%;干坯强度随淀粉添加量的增大而提高,均在7MPa以上,当氧化淀粉量为1.5%时,可达12MPa。烧结后氧化铝陶瓷的抗弯强度均在220MPa以上,其中当淀粉加入量为1.0%时,陶瓷的抗弯强度可达307MPa;烧结体的致密度随着淀粉加入量的增大而下降,当淀粉加入量小于1.0%时,烧结体的相对密度在96%以上,与注浆成型制备的烧结体的致密度相当。通过添加少量氧化淀粉,可实现氧化铝陶瓷的近净尺寸原位凝固成型,并可获得高致密度的陶瓷烧结体。  相似文献   

10.
采用水基凝胶流延工艺制备四方多晶氧化锆薄膜,结果表明,水基凝胶流延成型的氧化锆薄膜坯体结构均匀,确定合理的烧成制度,并考察薄膜的显微结构与烧结性能。其烧成过程可以将排胶和烧结过程一次完成,不需要单独的排胶过程,这大幅度简化了坯体的烧成工艺过程,同时坯片经1733K保温6h可获得结构致密的四方多晶氧化锆薄膜。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号