首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent analyses of antimycobacterial T cells clones from a small number of individuals indicate that mycobacteria preferentially induce Th cells that produce high levels of IFN-gamma and no or little IL-4 in Mycobacterium leprae-resistant tuberculoid leprosy (TT) patients and healthy subjects, whereas in one study M. leprae-induced Ts clones from polar lepromatous leprosy (LL) patients showed a reciprocal cytokine secretion profile and mediated their suppressive activity via the release of high levels of IL-4. We have evaluated these findings in peripheral blood T cells from a larger panel of TT and LL patients as well as healthy individuals. Mycobacterium-reactive T cell lines generated from the PBMC of these individuals were tested for cytokine secretion and proliferative capacity in response to M. leprae, Mycobacterium tuberculosis, and various individual mycobacterial Ag. The lepromatous pole of the leprosy spectrum was additionally investigated by analyzing the cytokine-secretion profile of M. leprae-induced (suppressor) T cell clones as well as primary ex vivo PBMC. All T cell lines from healthy individuals and TT patients responding to M. leprae, M. tuberculosis, or individual Ag, produced high levels of IFN-gamma and TNF-alpha but little or no IL-4 and IL-6. At the lepromatous pole, T cell lines failed to proliferate upon stimulation with M. leprae but in some cases produced significant levels of IFN-gamma. No IL-4 or IL-6 secretion was observed in response to M. leprae. These lines displayed strong proliferation and Th1-like cytokine production upon stimulation with M. tuberculosis. Similarly, stimulation of primary PBMC from LL patients with M. leprae or M. tuberculosis resulted in the release of IFN-gamma but no detectable IL-4 production. Control tetanus toxoid-reactive T cell lines from the same individuals instead produced large amounts of IL-4 and low levels of IFN-gamma. The analysis of M. leprae-induced T cell clones, including those with known suppressive activity, revealed that all lepromatous T cell clones produced large amounts of IFN-gamma. Most of these clones released no or little IL-4, but some clones produced higher levels of IL-4 in addition to IFN-gamma. Most clones tested produced IL-10 as well. The suppressor activity of suppressor T cell clones could not be inhibited by a neutralizing anti-IL-4 antibody and only in one case by neutralizing anti-IL-10 antibody. Anti-IL-4 and anti-IL-10 could not overcome the M. leprae-specific unresponsiveness observed in primary PBMC from LL patients.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
3.
To determine whether the Th1 response in tuberculosis correlated with IL-12R expression, we measured expression of the IL-12R beta 1 and IL-12R beta 2 subunits, as well as IL-12R beta 2 mRNA expression in tuberculosis patients and healthy tuberculin reactors. In tuberculosis patients, IFN-gamma production by Mycobacterium tuberculosis-stimulated PBMC was reduced, the percentages of T cells expressing IL-12R beta 1 and IL-12R beta 2 were significantly decreased, and IL-12R beta 2 mRNA expression was also markedly reduced. In contrast, in pleural fluid and lymph nodes at the site of disease in tuberculosis patients, in which IFN-gamma production is enhanced, IL-12R beta 2 mRNA expression was also increased. In M. tuberculosis-stimulated peripheral blood T cells from tuberculosis patients, anti-IL-10 and anti-TGF-beta enhanced IL-12R beta 1 and IL-12R beta 2 expression, and IFN-gamma production. In M. tuberculosis-stimulated peripheral blood T cells from healthy tuberculin reactors, recombinant IL-10 and TGF-beta reduced IL-12R beta 1 and IL-12R beta 2 expression, as well as IFN-gamma production. In combination with prior studies showing increased production of TGF-beta by blood monocytes from tuberculosis patients, this suggests that increased TGF-beta production is the underlying abnormality that reduces IL-12R beta 1 and IL-12R beta 2 expression in tuberculosis. Our findings provide evidence that IL-12R expression correlates well with IFN-gamma production in human tuberculosis, and that expression of IL-12R beta 1 and IL-12R beta 2 may play a central role in mediating a protective Th1 response.  相似文献   

4.
Peripheral blood mononuclear cells (PBMC) from the majority of adults (12 out of 18 subjects tested) showed an in vitro proliferative response to a 20 amino acid long peptide (peptide 1, a.a 18-37) derived from TSST-1. In contrast, thymocytes and PBMC from cord blood did not proliferate to this peptide. TSST-1 peptide 1 did not induce IL-1 beta mRNA in monocytes indicating that it does not behave as a superantigen. Proliferation of PBMC to peptide 1 could be blocked by anti-HLA-DR, but not by anti-HLA DP or DQ monoclonal antibodies suggesting that HLA-DR molecules are the restriction elements for the recognition of this peptide by T cells. Studies with subjects of known HLA-DR types showed that all types tested are capable of responding to this peptide. Peptide 1 shows homology to a.a 180-193 of mycobacterial hsp 65 and was shown to stimulate the proliferation of T cell lines and T cell clone specific for the purified protein derivative (PPD) of Mycobacterium tuberculosis. This cross reactivity may confer on TSST-1 the potential to trigger self reactivity and may also contribute to the natural immunity against TSST-1.  相似文献   

5.
Human immune responses to M. tuberculosis are characterized by activation of multiple T cell subsets including CD4+, CD8+, and gammadelta T cells, and the role of CD8+ alphabeta TCR+ T cells in this response is poorly understood. Stimulation of T cells from healthy tuberculin skin test-positive persons with live M. tuberculosis-H37Ra or soluble M. tuberculosis Ags readily up-regulated IL-2Ralpha (CD25) expression on CD8+ T cells. Purified resting and activated CD8+ T cells produced IFN-gamma and proliferated to both M. tuberculosis bacilli and soluble mycobacterial Ags with monocytes as APC. Precursor frequency of mycobacterial Ag-specific CD8+ T cells by IFN-gamma enzyme-linked immunospot was 5-10-fold lower than the precursor frequency of CD4+ T cells, and IFN-gamma secretion by CD8+ T cells was 50-100-fold lower. CD8+ T cells secreted approximately 10-fold less IFN-gamma per cell than CD4+ T cells in response to mycobacterial Ags. CD8+ T cell responses to M. tuberculosis bacilli were blocked by anti-MHC class I antibody and required Ag processing. Processing of M. tuberculosis bacilli by monocytes for presentation to MHC class I-restricted CD8+ T cells was insensitive to brefeldin A treatment, which blocks the conventional MHC class I Ag-processing pathway. These results represent the first demonstration that human cells can process pathogen Ags via an alternate Ag-processing pathway for MHC class I and suggest a mechanism for participation of IFN-gamma-secreting CD8+ T cells in the human immune responses to M. tuberculosis.  相似文献   

6.
Blood monocytes from patients with active tuberculosis are activated in vivo, as evidenced by an increase in the stimulated release of proinflammatory cytokines, such as TNF-alpha, and the spontaneous expression of IL-2R. Further, monocytes from patients demonstrate an augmented susceptibility to a productive infection with HIV-1 in vitro. Mycobacterium tuberculosis and its components are strong signals to activate monocytes to production of cytokines. In this study we examined the basis of activation of monocytes during active tuberculosis and by M. tuberculosis. We found a constitutive degradation of I kappa B-alpha, the major cytoplasmic inhibitor of nuclear factor kappa B (NF-kappa B), in freshly isolated PBMC and monocytes from patients with tuberculosis. In contrast, I kappa B-alpha levels in PBMC and monocytes from healthy subjects or from patients with nontuberculous pulmonary conditions were intact. Further, by electrophoretic mobility shift assay, NF-kappa B was activated in monocytes from tuberculous patients. The expression of I kappa B-alpha gene, which is responsive to activation by NF-kappa B, was up-regulated in PBMC and monocytes from patients, but not in mononuclear cells from healthy subjects or those with nontuberculous lung diseases. By contrast, the expression of other adherence-associated early genes, such as IL-8 and IL-1 beta, was not up-regulated in PBMC of tuberculous patients. Further, M. tuberculosis and its tuberculin, purified protein derivative, induced the degradation of I kappa B-alpha and the expression of I kappa B-alpha mRNA, and purified protein derivative induced the activation of NF-kappa B in monocytes.  相似文献   

7.
8.
Mycobacterium avium complex (MAC) is an intracellular pathogen which causes disseminated bacterial infection in immunocompromised individuals. This organism predominantly infects macrophages. Attachment of MAC to macrophages is the first step prior to invasion. We have previously shown that a 70 kDa protein of M. avium (Ma) is one of nine monocyte-binding proteins. In the present study, we have purified this protein from sonic extracts of Ma and studied some of its properties. The N-terminal sequence of this protein was identified and found to exhibit a strong homology to the 70 kDa heat shock protein (hsp) of M. leprae (Ml) and M. tuberculosis (Mtb). This protein was found to be present on the surface of the organism and was able to inhibit the attachment of intact Ma to human monocyte derived macrophages (MDM) up to 49% in an in vitro attachment assay using intact fluorescein isothiocyanate (FITC)-labelled Ma. Bovine serum albumin (BSA) and recombinant 70 kDa hsp from Mtb, which were used as controls, inhibited this attachment by 9.8 and 18%, respectively. These results suggest that the 70 kDa protein may have a role in the attachment of intact Ma to MDM. When tested in lymphocyte activation assays, this protein did not appear to significantly stimulate proliferation. However, it was found to stimulate the production of tumor necrosis factor (TNF)-alpha by MDM. This protein may be one of several Ma antigens that trigger host immune response by binding to MDM and stimulating the production of inflammatory cytokines such as TNF-alpha by these cells.  相似文献   

9.
Because CD1-restricted T cells lack CD4 but produce IFN-gamma in response to nonpeptide mycobacterial antigens, they could play a unique role in immunity to tuberculosis. We studied CD1-restricted T cells in the context of HIV infection by expanding CD4(-) T cell lines from 10 HIV-infected patients. Upon stimulation with Mycobacterium tuberculosis antigen or upon exposure to macrophages infected with M. tuberculosis, these T cell lines proliferated, produced IFN-gamma, and showed cytolytic T cell (CTL) activity against macrophages pulsed with mycobacterial antigen, findings consistent with a protective role against M. tuberculosis. Anti-CD1b antibodies abrogated T cell proliferation, IFN-gamma production, and CTL activity, demonstrating that these T cells are CD1 restricted. IFN-gamma production in response to M. tuberculosis was enhanced by antitransforming growth factor-beta in 8/10 lines, and by IL-15 in 2/10 lines. IFN-gamma production was augmented in a nonantigen-specific manner by IL-12 in 4/8 lines. When live HIV was cocultured with CD1-restricted T cell lines, p24 antigen and proviral DNA were not detected, indicating that the T cells were not infectable with HIV. Vaccination strategies aimed at activation and expansion of M. tuberculosis-reactive CD1-restricted T cells in HIV-infected patients may constitute a novel means to provide protection against tuberculosis, while minimizing the risk of enhancing HIV replication through stimulation of CD4(+) cells.  相似文献   

10.
11.
Previous work has shown that the study of host immune responses against Mycobacterium tuberculosis, the causative agent of tuberculosis, requires the availability of multiple mycobacterial antigens. Since purification of protein from M. tuberculosis cells is extremely cumbersome, we developed a protocol for purifying milligram amounts of ten recombinant antigens of M. tuberculosis from E. coli cells. Purified proteins were immunologically active and free of contaminants that confound interpretation of cell-based immunological assays. The method utilizes a three-step purification protocol consisting of immobilized metal-chelate affinity chromatography, size exclusion chromatography and anion-exchange chromatography. The first two chromatographic steps yielded recombinant protein free of protein contaminants, while the third step (anion-exchange chromatography) efficiently removed E. coli lipopolysaccharide, a potent polyclonal activator of lymphoid cells. The recombinant proteins were immunologically indistinguishable from their native (i.e., purified from M. tuberculosis) counterparts. Thus the method provides a way to utilize recombinant proteins for immunological analyses that require highly purified antigens.  相似文献   

12.
Clinical and immunologic evidence suggests that tuberculous pleuritis provides a model to understand protective immune mechanisms against Mycobacterium tuberculosis. We therefore evaluated the pattern of cytokine mRNA expression and cytokine production in pleural fluid and blood of patients with tuberculous pleuritis. RNA was extracted from mononuclear cells, reverse transcribed to cDNA, and amplified by polymerase chain reaction (PCR). After normalization for T-cell cDNA, cDNA from pleural fluid cells and peripheral blood mononuclear cells (PBMC) was amplified with cytokine-specific primers. PCR product was quantified by Southern blot. For the Th1 cytokines gamma interferon (IFN-gamma) and interleukin-2 (IL-2), PCR product was greater in pleural fluid than in blood, whereas PCR product for the Th2 cytokine IL-4 was decreased in pleural fluid compared with blood. Concentrations of IFN-gamma were elevated in pleural fluid compared with serum, but IL-2, IL-4, and IL-5 were not detectable. Mean concentrations of IFN-gamma and IL-2 in supernatants of M. tuberculosis-stimulated pleural fluid cells were significantly greater than corresponding concentrations in supernatants of stimulated PBMC. In situ hybridization showed that increased IFN-gamma production by pleural fluid cells was associated with a 20- to 60-fold increase in the frequency of antigen-reactive IFN-gamma-mRNA-expressing cells. Because IL-10 can be produced by T cells and macrophages, pleural fluid cells and PBMC were normalized for beta-actin cDNA content and then amplified by PCR with IL-10-specific primers. IL-10 mRNA was greater in pleural fluid cells than in PBMC and was expressed predominantly by macrophages. IL-10 concentrations were elevated in pleural fluid versus serum. These data provide strong evidence for compartmentalization of Th1 cytokines and IL-10 at the site of disease in humans with a resistant immune response to mycobacterial infection.  相似文献   

13.
Peripheral blood cells from 29 patients with active Mycobacterium avium (MAC) or Mycobacterium tuberculosis diseases were tested for mycobacterial antigen-induced interferon (IFN)-gamma and interleukin (IL)-4 production. Among MAC patients, human immunodeficiency virus (HIV) infection was associated with an 80% decrease in those who produced IFN-gamma, resulting in a predominantly type 2 cytokine profile. HIV infection in patients with tuberculosis correlates with a 37% increase in those producing IL-4 and a type 1 to type 0 profile shift. These qualitative changes were independent of CD4+ or CD8+ cell numbers. The amounts of both IFN-gamma and IL-4 were decreased in the HIV-infected population. Quantitative reduction of IFN-gamma was the result of fewer secreting cells rather than a down-regulation at the single-cell level. Disseminated disease was restricted to 2 of 5 HIV-infected MAC patients with a type 2 cytokine profile and 4 of 5 HIV-infected tuberculosis patients with a type 0 profile. These results demonstrated a shift in mycobacterial antigen-specific cytokine profiles from type 1 to type 0 and to type 2, in parallel with AIDS progression.  相似文献   

14.
Proteins that are actively secreted by Mycobacterium tuberculosis generate immune responses in the infected host. This has prompted the characterization of protein components of mycobacterial culture filtrates to develop subunit vaccines and immunodiagnostic reagents. Fractionation of filtrates of M. tuberculosis cultures has yielded an abundant protein called MPT63, which has an apparent molecular mass of 18 kDa. We report the molecular cloning and nucleotide sequence of the mpt63 gene, purification of recombinant MPT63 antigen from Escherichia coli cells, and serological characterization of MPT63. Nucleotide sequence analysis of mpt63 identified an open reading frame encoding a protein of 159 amino acids (aa) consisting of a 29-aa secretion signal peptide and a 130-aa mature MPT63 protein. Recombinant MPT63 protein, purified from E. coli cells, and native MPT63, purified from M. tuberculosis culture filtrates, were indistinguishable in serological assays. Thus, the recombinant protein constitutes a valuable reagent for immunological studies. MPT63 evoked humoral immune responses in guinea pigs infected with virulent M. tuberculosis by the aerosol route. The mpt63 gene is found only in species of the M. tuberculosis complex, as shown by DNA hybridization experiments. Moreover, polyclonal antibody against MPT63 does not cross-react with proteins of a common environmental mycobacterial species, Mycobacterium avium. The absence of cross-reactive epitopes makes MPT63 an attractive candidate as an M. tuberculosis complex-specific diagnostic reagent. In particular, evaluation of MPT63 as an M. tuberculosis complex-specific reagent for diagnostic skin testing is under way.  相似文献   

15.
Although the identity of T cells involved in the protection against Mycobacterium tuberculosis (Mtb) in humans remain unknown, patients with pulmonary tuberculosis (TB) have reduced numbers of Mtb-reactive, V gamma 9+/V delta 2+ T cells in their blood and lungs. Here we have determined whether this gamma deltaT loss is a consequence of Mtb Ag-mediated activation-induced cell death (AICD). Using a DNA polymerase-mediated dUTP nick translation labeling assay, 5% or less of freshly isolated CD4+ alpha beta or gamma delta T cells from normal healthy individuals and TB patients were apoptotic. However, during culture Mtb Ags induced apoptosis in a large proportion of V gamma 9+V delta 2+ peripheral blood T cells from healthy subjects (30-45%) and TB patients (55-68%); this was increased further in the presence of IL-2. By contrast, anti-CD3 did not induce any significant level of apoptosis in gamma delta T cells from healthy subjects or TB patients. Mtb Ag stimulation rapidly induced Fas and Fas ligand (FasL) expression by gamma delta T cells, and in the presence of metalloproteinase-inhibitors >70% of gamma delta T cells were FasL+. Blockade of Fas-FasL interactions reduced the level of Mtb-mediated gamma delta T cell apoptosis by 75 to 80%. Collectively, these findings demonstrate that Mtb-reactive gamma delta T cells are more susceptible to AICD and that the Fas-FasL pathways of apoptosis is involved. AICD of gamma delta T cells, therefore, provides an explanation for the loss of Mtb-reactive T cells during mycobacterial infection.  相似文献   

16.
Human Vgamma9Vdelta2 T cells contribute to immunity against intracellular pathogens and recognize nonpeptidic antigens, such as the mycobacterial phosphoantigen TUBAg. HIV infection is associated with a polyclonal decrease of peripheral Vgamma9Vdelta2 T cells and we previously reported that the remaining cells show a proliferative anergy to stimulation with Mycobacterium tuberculosis in 60% of patients. Because of alterations in the Th1/Th2 cytokine balance reported in HIV infection, we analyzed, at the single-cell level, the influence of exogenous IL-4, IL-10, IL-12 and IL-15 on the response to mycobacterial phosphoantigens of gammadelta T cells from HIV-infected patients and healthy donors. We report that the strong gammadelta T cell response to TUBAg is characterized by the rapid and selective production of the Th1/proinflammatory cytokines IFN-gamma and TNF-alpha in responder HIV-infected donors. In addition, a positive regulation by IL-12 and IL-15 of the production of these cytokines by Vgamma9Vdelta2 T cells in response to nonpeptidic ligands was observed, whereas IL-4 and IL-10 had no effect. In contrast, Vgamma9Vdelta2 T cells from the anergic HIV-infected donors had lost the ability to produce Th1 cytokines and were not shifted towards a Th2 profile. Furthermore, neither IL-12 nor IL-15 could reverse this functional anergy. The consequences of these observations are discussed in the context of HIV pathogenesis.  相似文献   

17.
Protein malnutrition leads to multiple detrimental alterations of host immune responses to mycobacterial infection. In this study, we demonstrated that splenocytes from low-protein (LP) guinea pigs vaccinated 6 weeks previously with attenuated Mycobacterium tuberculosis H37Ra failed to control the accumulation of virulent M. tuberculosis H37Rv in cocultured autologous peritoneal macrophages, despite the fact that they were able to control the accumulation of virulent tubercle bacilli in cocultured syngeneic peritoneal macrophages from normally nourished guinea pigs as successfully as did those from high-protein (HP) counterparts. Vaccine-induced growth control of virulent M. tuberculosis H37Rv in these cocultures appeared to be mediated by CD4 lymphocytes but not CD8 cells. Tuberculin (purified protein derivative [PPD])-induced lymphoproliferation was markedly impaired in vaccinated LP guinea pigs, and the depletion of CD4 lymphocytes significantly decreased lymphocyte proliferation whereas CD8 cell depletion did not. Protein malnutrition also impaired the abilities of cells from vaccinated LP guinea pigs to produce cytokines, including interferon, tumor necrosis factor alpha (TNF-alpha) and transforming growth factor beta (TGF-beta), in response to PPD, despite the demonstration of higher serum levels of TNF-alpha and TGF-beta after an intravenous injection of PPD into LP guinea pigs. In contrast, peritoneal macrophages from protein-malnourished guinea pigs produced a higher level of TGF-beta 4 days after infection in vitro with M. tuberculosis H37Rv than did those from protein adequate controls. These results suggest that dietary protein malnutrition impairs vaccine-induced resistance to M. tuberculosis, in part, by altering the cytokine profile to favor macrophage deactivation.  相似文献   

18.
We have investigated the expression and extracellular release of enzymatically active superoxide dismutase, one of the 10 major extracellular proteins of Mycobacterium tuberculosis, both in its native host and in the heterologous host Mycobacterium smegmatis. We found that the M. tuberculosis superoxide dismutase gene, encoding a leaderless polypeptide of Mr approximately 23,000 representing one of the four identical subunits of the enzyme, is expressed constitutively under normal growth conditions and at a 5-fold increased level under conditions of hydrogen peroxide stress. The highly pathogenic mycobacterium M. tuberculosis expresses 93-fold more superoxide dismutase than the nonpathogenic mycobacterium M. smegmatis, and it exports a much higher proportion of expressed enzyme (76 versus 21%); taking both expression and export into consideration, M. tuberculosis exports approximately 350-fold more enzyme than M. smegmatis. In M. smegmatis, recombinant M. tuberculosis superoxide dismutase is expressed at 8.4 times the level of the endogenous enzyme and the proportion exported (66%) approaches that in the homologous host; hence M. smegmatis exports up to 26-fold more of the recombinant than endogenous enzyme. Interestingly, subunits of the M. tuberculosis and M. smegmatis enzymes readily and stoichiometrically exchange with each other, forming five different complexes of four subunits, both when the enzymes are expressed in the recombinant host and when the purified enzymes are incubated together; however, each subunit retains its characteristic metal ion, iron for M. tuberculosis and manganese for M. smegmatis. Compared with the cell-associated enzyme, the supernatant enzyme of recombinant M. smegmatis is enriched for M. tuberculosis enzyme subunits, consistent with preferential export of the M. tuberculosis enzyme. Recombinant M. tuberculosis superoxide dismutase transcomplements a superoxide dismutase-deficient Escherichia coli, resulting in a reduction of sensitivity of the strain to oxidative stress, but the enzyme is not exported from this nonmycobacterial host. Our findings indicate that the information for export of the M. tuberculosis superoxide dismutase is contained within the protein but that export additionally requires export machinery specific to mycobacteria.  相似文献   

19.
Periplasmic copper, zinc superoxide dismutases (Cu,ZnSOD) of several Gram-negative pathogens have been shown to play an important role in protection against exogenous superoxide radicals and in determining virulence of the pathogens. Here we report the cloning and characterization of the sodC gene, encoding Cu,ZnSOD, from the Gram-positive Mycobacterium tuberculosis. The predicted protein sequence contains 240 amino acids with a putative signal peptide at the N-terminus and shows approximately 25% identity to other bacterial sodC. Recombinant proteins of a full-length sodC and a truncated form lacking the putative signal peptide were overexpressed in Escherichia coli and affinity purified. Renatured recombinant M. tuberculosis sodC protein possessed characteristics of a Cu,ZnSOD. Immunoblotting with an antiserum against the recombinant M. tuberculosis Cu,ZnSOD allowed detection of a single polypeptide in the lysate of M. tuberculosis. This polypeptide has a similar size as the recombinant protein without the putative signal peptide indicating that the endogenous Cu,ZnSOD in M. tuberculosis might be processed and secreted. Furthermore, immunogold electron microscopic image showed that Cu,ZnSOD is located in the periphery of M. tuberculosis. The enzymatic activity and subcellular localization of this novel Cu,ZnSOD suggest that it may play a role in determining virulence of M. tuberculosis.  相似文献   

20.
RNA arbitrarily-primed differential display PCR (RAP-PCR) was used to identify and isolate genes differentially expressed between attenuated (H37Ra) and virulent (H37Rv, Erdman) laboratory strains of Mycobacterium tuberculosis (Mtb). Using this method, cDNA fragments showing homology to three known mycobacterial genes and six putative novel genes in mycobacterial cosmid vectors were identified. Among the putative novel Mtb genes identified, we found: (1) gene MTV041.29, containing multiple tandem repetitive sequences and encoding a putative Gly-, Ala, Asn-rich protein (PPE family); (2) gene MTV004.03, containing the AT10S repetitive gene sequence; (3) gene MTV028.09, encoding a hypothetical protein of unknown function; (4) genes MTCY78.20,21, possibly encoding two hypothetical proteins of unknown function; (5) gene MTCY01A6.09, encoding a putative novel ferrodoxin dependent glutamate synthase; and (6) gene MTCY31.20, encoding a putative cyclohexanone monooxygenase. Using gene specific primers in a second differential display PCR and by RT-PCR amplification, novel genes 1, 2, 3 and 4 were shown to be differentially up-regulated in the attenuated Mtb strain H37Ra compared to H37Rv and Erdman strain. Overall, we demonstrated that RAP-PCR, as a first step, is a quick and sensitive method for the identification and isolation of novel genes expressed in Mtb. Because of limitations inherent to the lack of specificity of arbitrary primers in the RAP-PCR method, a second differential display PCR and RT-PCR amplification with gene-specific primers was necessary in order to confirm differential expression of the identified genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号