首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyoxal is a significant atmospheric aldehyde formed from both anthropogenic aromatic compounds and biogenic isoprene emissions. The chemical behavior of glyoxal relevant to secondary organic aerosol (SOA) formation and analysis is examined in GC-MS, electrospray ionization (ESI)-MS, and particle chamber experiments. Glyoxal oligomers are shown to rapidly decompose to glyoxal in GC injection ports at temperatures > or = 120 degrees C. Glyoxal dihydrate monomer is dehydrated at temperatures > or = 140 degrees C during GC analysis but shows only oligomers (n < or = 7) upon ESI-MS analysis. Thus both of these analytical techniques will cause artifacts in speciation of glyoxal in SOA. In particle chamber experiments, glyoxal (at -0.1 Torr) condensed via particle-phase reactions when relative humidity levels exceeded a threshold of -26%. Both the threshold humidity and particle growth rates (-0.1 nm/min) are consistent with a recent study performed at glyoxal concentrations 4 orders of magnitude below those used here. This consistency suggests a mechanism where the surface water layer of solid-phase aerosol becomes saturated with glyoxal dihydrate monomer, triggering polymerization and the establishment of an organic phase.  相似文献   

2.
Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) was used to probe molecular structures of oligomers in secondary organic aerosol (SOA) generated in laboratory experiments on isoprene photooxidation at low- and high-NO(x) conditions. Approximately 80-90% of the observed products are oligomers and up to 33% by number are nitrogen-containing organic compounds (NOC). We observe oligomers with maximum 8 monomer units in length. Tandem mass spectrometry (MS(n)) confirms NOC compounds are organic nitrates and elucidates plausible chemical building blocks contributing to oligomer formation. Most organic nitrates are comprised of methylglyceric acid units. Other important multifunctional C(2)-C(5) monomer units are identified including methylglyoxal, hydroxyacetone, hydroxyacetic acid, and glycolaldehyde. Although the molar fraction of NOC in the high-NO(x) SOA is high, the majority of the NOC oligomers contain only one nitrate moiety resulting in a low average N:C ratio of 0.019. Average O:C ratios of the detected SOA compounds are 0.54 under the low-NO(x) conditions and 0.83 under the high-NO(x) conditions. Our results underscore the importance of isoprene photooxidation as a source of NOC in organic particulate matter.  相似文献   

3.
Aerosol growth by heterogeneous reactions of diverse carbonyls in the presence and absence of acidified seed aerosols was studied in a 4 m long flow reactor (2.5 cm i.d.) and a 2-m3 indoor Teflon film chamber under darkness. The acid catalytic effects on heterogeneous aerosol production were observed for diverse carbonyls in various ranges of humidities and compositions of seed inorganic aerosols. Particle population data measured by a scanning mobility particle sizer were used to calculate organic aerosol growth. To accountforthe aerosol growth contributed by heterogeneous reactions, the increase in organic aerosol mass was normalized bythe organic mass predicted by partitioning or the square of predicted organic mass. The carbonyl heterogeneous reactions were accelerated in the presence of acid catalysts (H2SO4), leading to higher aerosol yields than in their absence. The experimental data from aerosol yields in the flow reactorwere semiempirically fitted to the model parameters to predict the organic aerosol growth. The model parameters consist of environmental characteristics and molecular structure information of organic carbonyls. Basicity constants of carbonyls were used to describe the proton affinity of carbonyls for the acid catalysts. Particle environmental factors, such as humidity, temperature, and inorganic seed composition, were expressed by excess acidity and the parameters obtained from an inorganic thermodynamic model. A stepwise regression analysis of the aerosol growth model for the experimental data revealed that either the chemical structure information of carbonyls or characteristic environmental parameters are statistically significant in the prediction of organic aerosol growth. It was concluded thatthis model approach is applicable to predict secondary organic aerosol formation by heterogeneous reaction.  相似文献   

4.
Interest has grown in designing new materials for groundwater treatment via "permeable reactive barriers". In the present case, a model siliceous surface, controlled pore glass (CPG), was treated with a polycation (quaternized polyvinyl pyridine, QPVP) which immobilizes anionic/nonionic mixed micelles, in order to solubilize a variety of hydrophobic pollutants. Polymer adsorption on CPG showed atypically slow kinetics and linear adsorption isotherms, which may be a consequence of the substrate porosity. The highest toluene solubilization efficiency was achieved for the silica-polycation-immobilized micelles (SPIM) with the highest polymer loading and lowest micelle binding, a result discussed in terms of the configuration of the bound polymer and the corresponding state of the bound micelles. The ability of SPIM to treat simultaneously a wide range of pollutants and reduce their concentration in solution by 20-90% was demonstrated. Optimization of SPIM systems for remediation calls for a better understanding of both the local environment of the bound micelles and their intrinsic affinities for different hydrophobic pollutants.  相似文献   

5.
The functional group compositions of atmospheric aerosol water-soluble organic compoundswere obtained employing proton nuclear magnetic resonance (1H NMR) spectroscopy in a series of recent experiments in several areas of the world characterized by different aerosol sources and pollution levels. Here, we discuss the possibility of using 1H NMR functional group distributions to identifythe sources of aerosol in the different areas. Despite the limited variability of functional group compositions of atmospheric aerosol samples, characteristic 1H NMR fingerprints were derived for three major aerosol sources: biomass burning, secondary formation from anthropogenic and biogenic VOCs, and emission from the ocean. The functional group patterns obtained in areas characterized by one of the above dominant source processes were then compared to identify the dominant sources for samples coming from mixed sources. This analysis shows that H NMR spectroscopy can profitably be used as a valuable tool for aerosol source identification. In addition, compared to other existing methodologies, it is able to relate the source fingerprints to integral chemical properties of the organic mixtures, which determine their reactivity and their physicochemical properties and ultimately the fate of the organic particles in the atmosphere.  相似文献   

6.
According to the pseudo-ideal mixing assumption employed in practically all chemical transport models, organic aerosol components from different sources interact with each other in a single solution, independent of their composition. This critical assumption greatly affects modeled organic aerosol concentrations, but there is little direct experimental evidence to support it. A main experimental challenge is that organic aerosol components from different sources often look similar when analyzed with an aerosol mass spectrometer. We developed a new experimental method to overcome this challenge, using isotopically labeled compounds ((13)C or D) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). We generated mixtures of secondary organic aerosol (SOA) from isotopically labeled toluene and from unlabeled α-pinene and used the HR-ToF-AMS data to separate these different SOA types. We evaluated their interaction by comparing the aerosol mass yields of toluene and α-pinene when the SOA was formed in these mixtures to their yields when the SOA was formed in isolation. At equilibrium, our results are consistent with pseudo-ideal mixing of anthropogenic and biogenic SOA components from these chemically dissimilar precursors.  相似文献   

7.
Different particulate matter (PM) samples were investigated by on-line single-particle aerosol time-of-flight mass spectrometry (ATOFMS). The samples consist of soot particulates made by a diffusion flame soot generator (combustion aerosol standard, CAST), industrially produced soot material (printex), soot from a diesel passenger car as well as ambient particulates (urban dust (NIST) and road tunnel dust). Five different CAST soot particle samples were generated with different elemental carbon (EC) and organic carbon (OC) content. The samples were reaerosolized and on-line analyzed by ATOFMS, as well as precipitated on quartz filters for conventional EC/OC analysis. For each sample ca. 1000 ATOFMS single-particle mass spectra were recorded and averaged. A typical averaged soot ATOFMS mass spectrum shows characteristic carbon cluster peak progressions (Cn+) as well as hydrogen-poor carbon cluster peaks (CnH(1-3)+). These peaks are originated predominately from the elemental carbon (EC) content of the particles. Often additional peaks, which are not due to carbon clusters, are observed, which either are originated from organic compounds (OC-organic carbon), or from the non-carbonaceous inorganic content of the particles. By classification of the mass spectral peaks as elemental carbon (i.e., the carbon cluster progression peaks) or as peaks originated from organic compounds (i.e., molecular and fragment ions), the relative abundance of elemental (EC) and organic carbon (OC) can be determined. The dimensionless TC/EC values, i.e., the ratio of total carbon content (TC, TC = OC + EC) to elemental carbon (EC), were derived from the ATOFMS single-particle aerosol mass spectrometry data. The EC/TC values measured by ATOFMS were compared with the TC/EC values determined by the thermal standard techniques (thermooptical and thermocoulometric method). A good agreement between the EC/TC values obtained by on-line ATOFMS and the offline standard method was found.  相似文献   

8.
The incremental secondary organic aerosol reactivity (ISOAR) of a species j is defined as the relative incremental change in secondary organic aerosol (SOA) formed per relative incremental change in the amount of species jemitted. The California Institute of Technology three-dimensional air quality model is used in conjunction with the Caltech Atmospheric Chemistry Mechanism (CACM) and the Model to Predict the Multiphase Partitioning of Organics to calculate spatially and temporally averaged ISOAR values for the South Coast Air Basin of California (SoCAB). The base case SOA concentrations are derived for September 9, 1993. The South Coast Air Quality Management District of California provided emission and meteorological data. ISOAR values are calculated for the lumped surrogate compounds considered by CACM: isoprene, low-yield monoterpenes, high-yield monoterpenes, high-yield aromatics, etc. This work presents basin-wide ISOAR values determined through regression analysis. In addition, ISOAR values are reported at individual locations within the SoCAB. Modeled data are compared with ISOAR values calculated using smog chamber data. Results indicate that long-chain alkanes present the highest ISOAR. On the other hand, short-chain organics present the lowest ISOAR.  相似文献   

9.
The formation of oligomeric molecules, an important step in secondary organic aerosol production, is reported. Aerosols were produced by the reaction of alpha-pinene and ozone in the presence of acid seed aerosol and characterized by exact mass measurements and tandem mass spectrometry. Oligomeric products between 200 and 900 u were detected with both electrospray ionization and matrix-assisted laser desorption ionization. The exact masses and dissociation products of these ions were consistent with various combinations of the known primary products of this reaction ("monomers") with and/or without the expected acid-catalyzed decomposition products of the monomers. Oligomers as large as tetramers were detected. Both aldol condensations and gem-diol reactions are suggested as possible pathways for oligomer formation. Exact mass measurements also revealed reaction products that cannot be explained by simple oligomerization of monomers and monomer decomposition products, suggesting the existence of complex reaction channels. Chemical reactions leading to oligomer formation provide a reasonable answer to a difficult problem associated with secondary organic aerosol production in the atmosphere. It is unlikely that monomers alone play an important role in the formation and growth of nuclei in the atmosphere as their Kelvin vapor pressures are too high for them to significantly partition into the particle phase. Polymerization provides a mechanism by which partitioning to the particle phase becomes favored.  相似文献   

10.
Glyoxal and methyl glyoxal are common secondary atmospheric pollutants, formed from aromatic and terpene precursors. Both compounds are extremely water-soluble due to dihydrate formation and partition into cloudwater. In this work, FTIR-ATR and mass measurements indicate that both compounds remain primarily in the condensed phase due to oligomer formation when aqueous solution droplets are evaporated, regardless of concentration (> or = 1 mM) or, for glyoxal, droplet evaporation rate. FTIR spectral analyses suggestthat oligomer formation is triggered by conversion from dihydrate to monohydrate forms, which are still nonvolatile but contain reactive carbonyl groups. Methyl glyoxal hemiacetal formation is observed by changes in the C-0/C=0 stretch peak area ratio. The formation of glyoxal oligomers is detected by a dramatic shift of the C-0 stretching peak toward low frequencies. Glyoxal oligomer peaks at 1070 cm(-1), 950 cm(-1), and 980 cm(-1) are assigned to free C-OH stretch, dioxolane-linked C-OC asymmetric stretch, and tentativelyto non-dioxolane-linked C-OC stretches, respectively. Acids have little effect on glyoxal oligomer formation; however, base interrupts oligomer formation by catalyzing glyoxal hydration and disproportionation to glycolic acid. Since glyoxal and methyl glyoxal are commonly found in cloudwater and are expected to remain largely in the aerosol phase when cloud droplets evaporate, this process may be a source of secondary organic aerosol by cloud processing.  相似文献   

11.
Volatile furandiones and aldehydes are significant atmospheric oxidation products of aromatic compounds. The mechanism of secondary organic aerosol formation by these compounds was probed using particle chamber observations and macroscale simulations of condensed phases. Growth of inorganic seed aerosol was monitored in the presence of humidity and high concentrations of 2,5-furandione (maleic anhydride), 3-methyl-2,5-furandione (citraconic anhydride), benzaldehyde, and trans-cinnamaldehyde. Particle growth commenced when the gas-phase saturation level of each organic compound and water vapor (relative to its pure liquid), when summed together, reached a threshold near one, implying the formation of a nearly ideal mixed organic/aqueous phase. However, these organics are immiscible with water at the high mole fractions that would be expected in such a phase. Highly acidic dicarboxylic acids produced by the reactions between furandiones and water were shown to rapidly acidify an aqueous phase, resulting in greatly increased benzaldehyde solubility. Thus, the uptake of these organics onto particles in the presence of humidity appears to be reaction-dependent. Finally, it is shown that dicarboxylic acids produced in these reactions recyclize back to furandiones when subjected to normal GC injector temperatures, which could cause large artifacts in gas/particle phase distribution measurements.  相似文献   

12.
Recent work has shown that particle-phase reactions contribute to the formation of secondary organic aerosol (SOA), with enhancements of SOA yields in the presence of acidic seed aerosol. In this study, the chemical composition of SOA from the photooxidations of alpha-pinene and isoprene, in the presence or absence of sulfate seed aerosol, is investigated through a series of controlled chamber experiments in two separate laboratories. By using electrospray ionization-mass spectrometry, sulfate esters in SOA produced in laboratory photooxidation experiments are identified for the first time. Sulfate esters are found to account for a larger fraction of the SOA mass when the acidity of seed aerosol is increased, a result consistent with aerosol acidity increasing SOA formation. Many of the isoprene and alpha-pinene sulfate esters identified in these chamber experiments are also found in ambient aerosol collected at several locations in the southeastern U.S. It is likely that this pathway is important for other biogenic terpenes, and may be important in the formation of humic-like substances (HULIS) in ambient aerosol.  相似文献   

13.
Secondary organic aerosol formation from isoprene photooxidation   总被引:3,自引:0,他引:3  
Recent work has shown that the atmospheric oxidation of isoprene (2-methyl-1,3-butadiene, C5H8) leads to the formation of secondary organic aerosol (SOA). In this study, the mechanism of SOA formation by isoprene photooxidation is comprehensively investigated, by measurements of SOA yields over a range of experimental conditions, namely isoprene and NOx concentrations. Hydrogen peroxide is used as the radical precursor, substantially constraining the observed gas-phase chemistry; all oxidation is dominated by the OH radical, and organic peroxy radicals (RO2) react only with HO2 (formed in the OH + H2O2 reaction) or NO concentrations, including NOx-free conditions. At high NOx, yields are found to decrease substantially with increasing [NOx], indicating the importance of RO2 chemistry in SOA formation. Under low-NOx conditions, SOA mass is observed to decay rapidly, a result of chemical reactions of semivolatile SOA components, most likely organic hydroperoxides.  相似文献   

14.
Organosulfates have been proposed as products of secondary organic aerosol formation. While organosulfates have been identified in ambient aerosol samples, a question remains as to the magnitude of their contribution to particulate organic mass. At the same time, discrepancies have been observed between total particulate sulfur measured by X-ray fluorescence (XRF) spectroscopy and sulfur present as inorganic sulfate measured by ion chromatography (IC) in fine particulate matter. These differences could be attributed to measurement bias and/or the contribution of other sulfur compounds, including organosulfates. Using the National Park Service IMPROVE PM(2.5) database, we examined the disparity between the sulfur and sulfate measurements at 12 sites across the United States to provide upper-bound estimates for the annual average contributions of organosulfates to organic mass. The data set consists of over 150?000 measurements. The 12 sites include Brigantine, NJ, Cape Cod, MA, Washington, DC, Chassahowitzka, FL, Great Smoky Mountains National Park, NC, Okefenokee, GA, Bondville, IL, Mingo, MO, Phoenix, AZ, San Gabriel, CA, Crater Lake National Park, OR, and Spokane, WA. These sites are representative of the different regions of the country: Northeast, Southeast, Midwest, Southwest and Northwest. We estimate that organosulfur compounds could comprise as much as 5-10% of the organic mass at these sites. The contribution varies by season and location and appears to be higher during warm months when photochemical oxidation chemistry is most active.  相似文献   

15.
Secondary organic aerosol (SOA) from the α-pinene + ozone reaction readily coats TiO(2) and CeO(2) metal-oxide nanoparticles in smog-chamber experiments under atmospherically relevant conditions. Otherwise identical experiments compared bare nanoparticles and nanoparticles coated with poly(acrylic acid) (PAA). The PAA-coated particles result in significantly higher new-particle formation rates, suggesting that the SOA vapors coat bare metal oxide more readily than the PAA. After particles begin to grow via SOA coating, however, all particles, independent of size or the presence of a metal-oxide core, grow with a rate proportional to their surface area, modified to account for gas-phase diffusion in the transition regime between the kinetic and bulk-flow regimes. This suggests that SOA condensational growth may be modeled based on the size distribution of the condensational sink in the atmosphere.  相似文献   

16.
The secondary organic aerosol (SOA) module in PMCAMx, a three-dimensional chemical transport model, has been updated to incorporate NOx-dependent SOA yields. Under low-NOx conditions, the RO2 radicals react with other peroxy radicals to form a distribution of products with lower volatilities, resulting in higher SOA yields. At high-NOx conditions, the SOA yields are lower because aldehydes, ketones, and nitrates dominate the product distribution. Based on recent laboratory smog chamber experiments, high-NOx SOA parametrizations were created using the volatility basis-set approach.The organic aerosol (OA) concentrations in the Eastern US are simulated for a summer episode, and are compared to the available ambient measurements. Changes in NOx levels result in changes of both the oxidants (ozone, OH radical, etc.) and the SOA yields during the oxidation of the corresponding organic vapors. The NOx dependent SOA parametrization predicts a maximum average SOA concentration of 5.2 microg m(-3) and a domain average concentration of 0.6 microg m(-3). As the NOx emissions are reduced by 25%, the domain average SOA concentration does not significantly change, but the response is quite variable spatially. However, the predicted average SOA concentrations increase in northern US cities by around 3% but decrease in the rural southeast US by approximately 5%. A decrease of the average biogenic SOA by roughly 0.5 microg m(-3) is predicted for the southeast US for a 50% reduction in NOx emissions.  相似文献   

17.
The conditions under which semivolatile organic gases condense were studied in a Teflon particle chamber by scanning mobility particle sizing (SMPS) of the resultant particles. Benzaldehyde, maleic and citraconic anhydrides, n-decane, trans-cinnamaldehyde, and citral were introduced in various combinations into a particle chamber containing either particle-free nitrogen or nitrogen with dry seed particles made out of sodium chloride, D-tartartic acid, ammonium sulfate, or 1,10-decanediol. No organic gas was allowed to reach its saturation point relative to the vapor pressure of its pure liquid in any experiment. In the absence of seed particles, organic aerosol particles formed by ternary nucleation when the sum of the individual organic saturation levels reached a threshold between 1.17 and 1.86. With seed particles present, particle sizes began to increase when the sum of organic saturation levels reached 1.0. This size increase corresponds to the establishment and activation of ternary organic layers on the "clean" seed particles, as predicted by absorption partitioning theory. The observed increases in particle volume depended on initial seed particle volume, indicating that either gas diffusion rates or chemical reactions were controlling the rate of uptake.  相似文献   

18.
We present a method for measuring secondary organic aerosol (SOA) production at low total organic mass concentration (COA) using proton-transfer reaction mass spectrometry (PTR-MS). PTR-MS provides high time resolution measurements of gas-phase organic species and, coupled with particle measurements, allows for the determination of aerosol yield in real time. This approach facilitates the measurement of aerosol production at low COA; in fact aerosol mass fractions can be measured during alpha-pinene consumption as opposed to only at the completion of gas-phase chemistry. The high time resolution data are consistent with both the partitioning theory of Pankow (Atmos. Environ. 1994, 28,185 and 189) and the previous experimental measurements. Experiments including the effect of UV illumination and NOx reveal additional features of alpha-pinene + ozone product photochemistry and volatility. The high time resolution data also elucidate aerosol production from alpha-pinene ozonolysis at COA < 10 microg m(-3) and show that extrapolations of current partitioning models to conditions of low COA significantly underestimate SOA production under dark, low-NOx conditions. However, extrapolations of current models overestimate SOA production under illuminated, higher-NOx conditions typical of polluted regional air masses.  相似文献   

19.
As part of the Southeastern Aerosol and Visibility Study (SEAVS), water-soluble organic species (WSOS) in fine aerosols collected from July 15 to August 25, 1995, at the Great Smoky Mountain National Park, Tennessee (USA), were chemically classified into seven groups, with concentrations ranging from around 1 to >200 ng/m3. Dicarboxylic acids represented the dominant identified compound class, and succinic acid was the most abundant dicarboxylic acid. The trends in data suggest that most WSOS collected in the SEAVS samples were mainly generated from secondary photochemical reactions, especially during the first (cleaner) half of the sampling campaign. High relative humidity at the sampling site resulted in substantial water uptake by the aerosols, which may have enhanced the levels of succinic acid by reducing its rate of photooxidation. Concurrent trends in malic and malonic acid concentrations suggest these were generated from the oxidation of succinic acid. Consistent with the conversion of 3-hydroxypropanoic acid to malonic acid, it appears that 4-hydroxybutanoic acid served as a major precursor contributing to high levels of succinic acid in the daytime. Nocturnal WSOS generally followed the trend of diurnal WSOS, but they exhibited different chemical compositions and lower concentrations, unlike what has been reported for an urban site. A nocturnal-to-diurnal ratio of succinic acid larger than 0.25 may indicate an atmosphere dominated by photochemical reactions, rather than by primary emissions.  相似文献   

20.
Secondary organic aerosol (SOA) formation from the photooxidation of five polycyclic aromatic hydrocarbons (PAHs, naphthalene, 1- and 2-methylnaphthalene, acenaphthylene, and acenaphthene) was investigated in a 9-m(3) chamber in the presence of nitrogen oxides and the absence of seed aerosols. Aerosol size distributions and PAH decay were monitored by a scanning mobility particle sizer and a gas chromatograph with a flame ionization detector. Over a wide range of conditions, the aerosol yields for the investigated PAHs were observed to be in the range of 2-22%. The observed evolution of aerosol and PAH decay indicate that light and oxidant sources influence the time required to form aerosol and the required threshold reacted concentration of the PAHs. The SOA yields also were related to this induction period and the hydroxyl radical concentrations, particularly for smaller aerosol loadings (<~6 μg m(-3)). Estimation of SOA production from oxidation of PAHs emitted from mobile sources in Houston shows that PAHs could account for more than 10% of the SOA formed from emissions from mobile sources in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号