首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total knee replacement is a successful procedure with high clinical success rates. Problems are mostly initiated on the tibial side, and may be due to – amongst others – improper mechanical design of the tibial base plate. In this paper some new design concepts for the tibial component of a total knee prosthesis are presented. They are evaluated experimentally using a model for a proximal tibia, and strain gauge measurements and displacement measurements as experimental techniques. The designs are meant to yield a physiological load sharing between the trabecular and the cortical bone in the proximal tibia, and to minimize anterior lift-off of the tibial base plate. The optimal design required a metal backing of the plastic part and a thin continuous metallic rim in contact with the proximal tibial cortex. An optimal macro-composite structure within the plastic part was obtained by using thin steel wires in the transversal direction, connected to the metallic rim. With this optimal design, it was shown that the force required to close the anterior gap at simulated knee bending was smaller than 250 N, which can easily be applied clinically by an anteriorly placed clamp or bone screw.  相似文献   

2.
Ultra High Molecular Weight PolyEthylene (UHMWPE) is the polymer bearing material most commonly used for the design of the tibial insert in total knee joint replacement (TKJR). Sterilization by gamma irradiation in air causes oxidative changes in the polymer component that leads to mechanical property variations through its thickness. This may be one of the causes of the component failure. A general three-dimensional elastic contact model has been therefore developed to predict both the contact stresses and the resulting internal stresses accounting for the plastic component finite thickness and its multilayered structure (constitutive layers of different thickness and mechanical properties) resulting from oxidation. Predictions of the maximum contact pressure and internal stresses have demonstrated that sterilization induces higher contact pressure, stress discontinuities at layer interfaces, possible bending effects and delamination risks.  相似文献   

3.
Tibial component loosening is a major problem associated with knee prostheses. Tensile stresses in the brittle cement immediately below the tibial plateau are likely to influence loosening. To establish the stresses at selected sites in the cement layer, a large model of a tibial plateau, underlying cement and bone was constructed and three dimensional strain rosettes were embedded into it. The mechanical properties of the model materials were evaluated and compared with properties of an actual knee. The construction of the model is described and different methods for embedding the three dimensional strain rosettes into the cement are evaluated.  相似文献   

4.
This paper presents a continuous elastic–plastic asperity contact model with or without the consideration of friction to investigate the micro-contact properties of gear tooth profiles. The model for normal or side contact analysis is established according to Hertz contact theory and the asperity morphology feature, which yields to similar results as obtained from the model proposed by Chang W.R., Etsion I., and Bogy D.B. (CEB model) and the model proposed by Kogut L. and Etsion I. (KE model). More importantly, this model avoids the constant average contact stress as predicted by the CEB model, and the noncontinuous contact stress and deformation within the ultimate strength as given by the KE model. As a application of the present theoretical model in micro-contact analysis of rough tooth profiles, a finite element model (FE model) for elastic–plastic asperity in normal or side contact is established according to the measured surface parameters of a spur gear pair. It is shown that the extreme point of Von Mise stress of the asperities along the normal vector is ascertained by FE model, and that the extreme point is relative to the initial occurrence of the asperities plastic deformation. Compared with the present theoretical model, the similar normal contact stress along the contact radius is attained by FE model. Though the contact stress isogram in the specific plane in normal or side contact of the asperities is a circle or ellipse respectively when the plastic deformation is expanded from the inside of the asperities to their surfaces, it is in line with the distribution of elastic and plastic region of the theoretical model. Compared with CEB model, KE model, and FE model, the consistent results are attained by the present theoretical model in elastic–plastic asperity contact analysis. The results indicate that the theoretical model is applicable to the elastic–plastic asperity contact analysis on the rough surface of a spur gear drive.  相似文献   

5.
 离散磁道式磁盘在与磁头瞬态接触过程中极易损坏.为改善离散磁道式磁盘的瞬态接触状况,采用有限元仿真方法,建立了平整化前后离散磁道式磁盘与磁头的瞬态接触模型,分析了平整化前后离散磁道式磁盘接触应力分布特点,研究了磁头冲击速度、径向速度、磁盘表面摩擦系数等接触条件及平整化对离散磁道式磁盘最大等效塑性应变、塑性应变总体积的影响.结果表明:磁头冲击速度、寻道速度增大均可导致磁盘最大等效塑性应变、塑性应变总体积增大;摩擦系数增大可增大磁道最大等效塑性应变、减小塑性应变总体积;在接触初期,平整化离散磁道式磁盘可以减小磁道最大接触应力,缓解应力集中现象;在接触全过程中,平整化离散磁道式磁盘可以减小磁道最大等效塑性应变及塑性应变总体积;平整化所用2种弹性模量等力学特性不同的填充材料,即磁道材料与类金刚石碳,对于磁道接触状况的改善作用区别较小.以上结论可为降低离散磁道式磁盘的破坏程度提供理论指导.  相似文献   

6.
新型负泊松比多孔吸能盒平台区力学性能   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种具有负泊松比效应的汽车前纵梁吸能盒(NPRC)结构,通过对元胞平台区的失效模式和平台应力的分析,研究了此结构在失效时的力学性能,即等效弹性模量和平台应力在面内加载过程中均能得到一定程度的增强,表现出较好的能量吸收能力。根据NPRC元胞在平台区的力学模型,分别建立了发生弹性屈曲和塑性塌陷时的临界应力公式,得出塑性塌陷是该结构的主要失效模式。通过Matlab程序建立了NPRC元胞的参数化有限元模型,研究了元胞几何参数与平台应力的关系,即元胞的平台应力与长度系数和元胞夹角呈反比,与厚度系数呈正比。通过NPRC结构3×3样件的面内轴向准静态压缩实验验证了有限元分析结果,实验结果表明:NPRC样件等效负泊松比为-11.97,产生密实化现象,平台应力的峰值随着应变的增加逐渐增大,这对提高能量吸收性能具有重要的研究意义。  相似文献   

7.
孙爽  王军 《包装工程》2021,42(19):178-184
目的 瓦楞纸板由于其材料的特殊性,在运输过程中会受到环境湿度的影响,因此,首先研究标准环境下的平台应力模型,然后引入湿度因素对模型进行修正.方法 采用试验及理论建模的方法建立基于环境湿度的纵向压缩平台应力理论模型.通过实验手段探讨瓦楞原纸极限应力随环境湿度的变化规律,建立其随环境湿度的特征曲线,然后引入标准环境下的平台应力理论模型中,建立任意环境湿度下的平台应力理论模型.结果 与未考虑湿度建立的瓦楞纸板平台应力相比,考虑湿度建立的理论模型与实验结果有较好的一致性,验证了模型的准确性.结论 建立任意湿度下的理论模型对于平台应力有很好的预测作用,在实际应用中对瓦楞纸板的选择以及包装设计有很大的指导作用.  相似文献   

8.
目的 研究冲击速度和结构参数对米字形填充正方形蜂窝异面平台应力的影响规律。方法 利用ANSYS/LS-DYNA建立该蜂窝可靠的基于胞元阵列的异面冲击分析有限元模型;基于简化的超折叠单元理论推导该蜂窝的准静态平台应力理论公式,理论值与仿真值相吻合验证理论公式的正确性。对不同壁厚边长比的蜂窝,在不同冲击速度下进行异面冲击仿真分析,利用LS-PrePost软件处理得到相应的接触力-位移曲线,进一步处理得到变形模式和平台应力,并以图表的形式加以展示与分析。结果 不同冲击速度下结构参数固定的蜂窝表现出LS、MS和HS等3种不同的异面冲击变形模式,从LS模式转变到MS模式再到HS模式的临界速度分别约为20 m/s和150 m/s;壁厚边长比对变形模式的影响可忽略。结论 该蜂窝动态平台应力随冲击速度(或壁厚边长比)的增加而增大,且增长速率不断提高。当其他参数固定时,LS模式和MS模式下该蜂窝的动态平台应力与冲击速度呈二次函数关系,HS模式下动态平台应力与冲击速度的平方呈线性关系;动态平台应力与壁厚边长比呈幂函数关系。基于仿真计算结果,得到了该蜂窝动态平台应力的经验表达式。  相似文献   

9.
In order to extend the lifetime of total knee replacements (TKR) in vivo, reduction of the volumetric wear rate of ultra high molecular weight polyethylene (UHMWPE) bearings remains an important goal. The volume of wear debris generated in fixed bearing total knee devices increases significantly when subjected to higher levels of internal-external rotation and anterior-posterior displacement. Six PFC Sigma fixed bearing TKR were compared with six LCS rotating platform mobile bearing knees using a physiological knee simulator with high rotation kinematic inputs. The rotating platform polyethylene inserts exhibited a mean wear rate which was one-third of that of the fixed bearing inserts despite having increased femoral contact areas and additional tibial wear surfaces. The rotating platform design decouples knee motions, by allowing unidirectional motion at the tray-insert articulation, which reduces rotation at the femoral-insert counterface. This translation of complex knee motions into more unidirectional motions results in molecular orientation of the UHMWPE and reduced volumetric wear.  相似文献   

10.
The surface crack opening displacements are characterised by digital image correlation for a (thin) plane stress 316 stainless steel compact tension sample subjected to an overload event. This supports a traditional plasticity‐induced closure interpretation showing a knee in the closure response prior to overload, an absence of closure in the accelerated growth regime followed by accentuated closure in the retardation regime. By contrast, measurement of the mid‐thickness elastic strain field behind and ahead of the crack made by synchrotron X‐ray diffraction shows no evidence of significant crack face contact stresses behind the crack tip on approaching minimum loading. Rather the changes during loading and overloading can mostly be explained by a simple elastic plastic analysis using a value of the yield stress intermediate between the initial yield stress and the UTS. This shows very significant compressive reverse plastic strains ahead of the crack that start to form early during unloading. At the moment it is not clear whether this difference is because of the increasing stress intensity applied as the crack grows, or for some other reason, such as prevention of the crack faces closing mid‐thickness due to the reverse plastic zone.  相似文献   

11.
针对半月板损伤切除后胫股关节接触特性的变化,该文利用正常膝关节四个屈曲角度(0°/25°/60°/80°)下的MRI 图像数据,构建了正常/内侧半月板切除/外侧半月板切除/双侧半月板切除的胫股关节有限元模型,对各屈曲角度下的四种模型分别施加单一压载荷和压扭组合载荷进行有限元仿真,仿真结果表明:1) 对胫股关节的各个屈曲角位姿而言,单侧半月板损伤切除后,存留侧半月板所承担的轴向载荷及半月板表面的最大等效应力增加,其中外侧半月板切除较内侧半月板切除的增量大;2) 各屈曲角位姿下,半月板损伤切除后,胫骨/股骨软骨直接传递的轴向载荷增大,双侧半月板切除的增加量最大,单侧半月板切除对切除半月板侧的影响次之,对保留半月板一侧的影响最弱;此外,胫骨软骨上的最大等效应力以内侧/外侧/双侧切除的顺序依次增大;3) 胫股关节中外侧/双侧半月板损伤被切除后,25°和80°的屈曲角位姿下的外侧胫骨软骨上出现明显的应力集中.总之,对于各个屈曲角位姿的胫股关节,半月板损伤切除后,导致胫骨软骨/股骨软骨通过直接接触传递了更多的载荷,由此改变了软骨上的应力分布,使软骨上的最大等效应力值增加,从而引起了关节软骨退变及关节的其它综合病变.外侧半月板切除引起的胫股关节接触特性的变化比内侧半月板切除时更大,在半月板切除术中应加以重视.  相似文献   

12.
目的考虑到蜂窝芯斜向孔壁发生折叠的能量耗散机制,建立基于孔壁折叠的平台应力表达式。方法首先从理论上分析蜂窝芯变形单元水平固定塑性铰的能量耗散情况,然后对不同厚跨比条件下的蜂窝纸芯进行横向面内压缩试验,得到平台应力,最后将试验结果与Gibson&Ashby模型以及文中模型进行对比。结果蜂窝胞壁厚度与蜂窝胞元边长之比对平台应力有一定的影响,蜂窝芯面内压缩平台应力与胞壁厚度和蜂窝胞元边长之比的平方呈正比关系。由对比结果可知,文中模型理论值与平台应力试验值更加吻合。结论揭示了蜂窝芯横向面内压缩的能量耗散机制,平台应力表达式可用于多种材料的双壁厚蜂窝面内压缩力学性能的评估,具有一定的普适性。  相似文献   

13.
Aseptic loosening of the tibial component; which may be caused by mechanical stress shielding in the bone and may require revision surgery; is the primary concern of total knee replacement (TKR). The stiffness of the implant material had a marked influence on the stresses developed in the constituents and surrounding bones of the artificial knee and then will affect the bone stress shielding. Therefore, the functionally graded materials had been developed as a potential tibia tray material of TKR due to its improved capability of stress distribution. In the current investigation two dimensional finite element models have been developed to study bone and interface stresses for six different tibial prothesises (titanium, CoCrMo and four functional graded materials “FGM” models). The utilization of FGM tibia tray with elastic modulus changing gradually in vertical direction downwardly showed a favorable stress distribution outcome. Furthermore, the results has revealed that the FGM tibia tray will reduce the stress shielding in the surrounding bones of the artificial knee which will increase the life of the total knee prosthesis.  相似文献   

14.
To provide data for prosthesis design, the fatigue crack growth resistance of irradiated ultrahigh molecular mass polyethylene (UHMMPE) in saline solution at 37°C was determined from tests performed on compact tension specimens, comparable in size to the components in knee prostheses. The specimens were cyclically loaded by using a sinusoidal wave form at 1 Hz with a minimum-to-maximum load ratio of 0.1. Scanning electron microscopic fractography was used to examine the fracture surfaces. At higher stress levels, the Paris's Law was used to analyse the data, and a striation pattern with each striation corresponding to multi-cycles was observed. At lower stress levels, discontinuous fatigue crack growth was found, a phenomenon which dominated the fatigue life of the material and had not been reported previously in this material. A craze zone ahead of the crack tip was observed, which formed the discontinuous crack growth band with a length relevant to the Dugdale plastic zone length.  相似文献   

15.
吴永  何思明  李新坡 《工程力学》2012,29(3):230-236
合理的颗粒接触摩擦模型是从微观角度研究各类结构面强度的基础,然而受制于岩土体颗粒在微观高应力环境中表现出的复杂接触特征,该问题一直未能很好解决。Fujimoto 在2000 年给出了受切向荷载作用的微凸体在理想弹性或完全塑性接触状态下的微观位移特性,但却缺少对塑性强化接触状态下的摩擦进行解析,难被用于分析微观高应力状态下岩土颗粒的接触摩擦。为此,以Fujimoto模型为基础,结合作者曾经提出的塑性强化接触变形理论,在构建塑性强化接触状态下颗粒微观位移模型的基础上,系统的研究了切向荷载作用下塑性强化材料颗粒的接触摩擦机理,阐明了不同接触状态下塑性强化材料颗粒的切向微观位移特征。最后通过算例分析显示了模型的合理性。结果表明:颗粒摩擦本质上是不同法向荷载不同接触状态区域按照不同摩擦类型提供摩擦的综合,而摩擦失稳就是接触面上微滑区扩大、粘着区缩小并消失的过程。  相似文献   

16.
王大奎  张军  王春艳  郭璇 《工程力学》2013,30(2):354-359
针对动车组、机车车轮与高速道岔的磨耗问题,测量运行线路上磨耗后的车轮与道岔的实际几何尺寸,应用有限元方法求解车轮与道岔长短心轨的接触问题。计算了车轮与高速道岔的长短心轨部分在不同位置的接触状态,分析得出了不同工况下车轮与心轨接触斑、等效应力以及接触法向力的分布和变化规律,为道岔结构的合理设计和型面尺寸的优化提供了一定的理论依据。结果表明:JM3型机车车轮与18号高速道岔的心轨型面匹配不合理;动车组和机车车轮与心轨间的最大应力值都超过了轮轨材料的屈服极限,发生塑性变形;车轮在钢轨上的横移量影响轮岔之间的磨耗,向心轨外侧的横移量越大,磨耗越严重。  相似文献   

17.
The evolution of microcontact induced deformation and stress states under repeated loading and unloading condition is of great interest for the scientific understanding as well as from the engineering design considerations of microelectromechanical systems (MEMS) based switches and similar other devices since they operate under cyclic condition. This study, therefore, investigated the microcontact interaction between deformable smooth cylindrical segment and deformable smooth flat using the finite element analysis. Elastic and elastic–plastic material behaviors and adhesion interaction are considered. The detailed information about contact area, displacement and stress state in the contact region under cycling condition are presented. Contact area varies nonlinearly even when the applied load is varying linearly in a cycle. Additionally, contact areas during loading and unloading portions of a cycle are not equal at the same load level. The deformation and contact area increases in the presence of adhesion force and also with elastic–plastic material behavior. However, the adhesion force is reduced while the contact area is increased during the microcontact between elastic–plastic bodies in comparison to those between elastic bodies. The maximum increase in stress and deformation states occurs during the first cycle, and then slowly with increasing number of cycles. Further, the maximum stress state is not at the contact surface and also not at instant of the maximum applied external force. Finally, adhesion force during microcontact interaction can be of the same order as the applied external force. Therefore, design and analysis of microcontacts in micromechanical switches and similar other devices should include the effects of adhesion force and cyclic effects. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United State Air Force, Department of Defense, or the U.S. Government.  相似文献   

18.
孙爽  王军 《包装工程》2021,42(21):169-175
目的 研究了不同厚度的瓦楞纸板受到纵向压缩时的变形模式,以及对应模式的平台应力理论模型和变化趋势.方法 对不同厚度的瓦楞纸板进行纵向准静态压缩,模拟实际运输中瓦楞纸板受到压缩时的变形情况,建立不同厚度的瓦楞纸板平台应力理论模型,根据试验数据对平台应力进行评估.结果 不同厚度的瓦楞纸板受到静态压缩时,产生了3种不同的变形,包括面纸和芯纸不分离,面纸和芯纸部分分离,面纸和芯纸完全分离.发现对于不同的变形,瓦楞纸板的平台应力变化较为明显,且随着瓦楞纸板厚度的增加,分离情况变多,平台应力的降低较为明显.结论 厚度增大会使瓦楞纸板产生变形使得平台应力下降,因此建立不同厚度的瓦楞纸板平台应力理论模型对瓦楞纸板的力学性能进行评估,这对瓦楞纸板缓冲材料尺寸选择,以及瓦楞纸箱的设计等有一定的指导意义.  相似文献   

19.
The integration of materials selection and design are essential to the success of new product development, especially when applied to biomedical devices. The knee prosthesis, like any other implant, is a product that still lacks satisfactory design solutions for solving the problem of aseptic loosening. Stress shielding is one of the main causes of aseptic loosening that is intimately related to the overall design of the knee prosthesis. The design of the location pegs in the femoral component of the knee prosthesis is seen to have a critical effect on the stress shielding. In this study, therefore, different combinations of location peg geometries and material designs were assessed using finite element analyses in conjunction with a design of experiments procedure. The materials considered were Co–Cr alloy (as reference material) and functionally graded material (FGM) for the main body of the femoral component, and various porous materials for the pegs (as promising new materials). The performance outputs (responses) were stress levels in the femoral bone to assess the stress shielding effect, and stress levels in the pegs to assess adequate peg strength. The result revealed conflicts in satisfying the design objectives. Therefore, a multi-objective optimization was carried out to find the optimal geometries of the pegs for the femoral component. Based on the findings of the optimization process, a set of candidate designs was generated and a multi-criteria decision making approach used to obtain the final ranking of candidate designs. The ranking order demonstrated the superiority of using a FGM femoral component with porous material pegs of conical geometry. By comparing the results with the standard Co–Cr design, it was shown that the new design of pegs can significantly increase the magnitude of stresses seen at the distal femur; hence reduce the stress shielding effect, without over compromising on the strength of the pegs.  相似文献   

20.
This paper presents the results of a combined experimental and computational study of contact damage in a 3 mole% yttria partially stabilized zirconia (3-YSZ) that is relevant to hip implants and dental restorations. Contact-induced loading in real applications is idealized using Hertzian contact model to explain plasticity phenomena and failure mechanisms observed under monotonic and cyclic loading. Under monotonic loading, the elastic moduli increase with increasing loading levels. Under cyclic loading, the ceramic specimens fail with progressive cone cracking. X-ray analyses reveal that stress-induced phase transformation (from tetragonal to monoclinic phases) occurs under cyclic contact loading above the critical load levels (~8.5 kN). Furthermore, when the cyclic loading level (5.0 kN) is less than a critical load levels (7.5 kN) that is required to induce surface cone cracks, significant plastic damage is observed in the subsurface zone underneath the contact area. These suggest that the cyclic contact loading induce both plastic damage and tetragonalto-monoclinic phase transformation in the 3-YSZ, leading to significant degradation in long-term strength. The implications of the results are discussed for the design of zirconia femoral heads in total hip replacements and zirconia crowns in dental restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号