首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomimetic composites can be fabricated by coating hollow polyelectrolyte capsules with biological interfaces such as a phospholipid membrane and proteins. Polyelectrolyte capsules have been templated applying the Layer-by-Layer technique of polyelectrolyte assembled on decomposable cores, which are destroyed after the assembly of the polyelectrolyte multilayer. Phospholipid vesicles of 200-300 nm size are spreaded on the capsule wall forming a continuous lipid membrane. Further functionalisation of the outer capsule wall can be achieved with fused virions and recrystallised S-layers. Compartimentation of the capsule interior with lipid vesicles has been possible by using a solvent exchange method. The functionalisation of the outer capsule surface with biomolecules, together with the creation of internal compartments in the capsule, open new nanobiotechnological challenges towards the fabrication of artificial cells.  相似文献   

2.
The deformations of lipid coated polyelectrolyte capsules induced by osmotic pressure were determined in poly(styrene sulfonate, sodium salt) (PSS) solution by making use of the fact that PSS molecules with a molecular weight 70000 will not penetrate into the capsules. At a critical osmotic pressure the initial spherical capsules changed their shape and became an invagination. The measurements of single particle light scattering provided the wall thickness of the lipid-coated capsules with 25.6 nm while the thickness for pure polyelectrolyte capsules in solution is about 21.6 nm, indicating that the coating lipid layer has about 4 nm thickness. It demonstrates that DMPA forms a bilayer on the surface of polyelectrolyte capsules. With these data, that the elasticity coefficient of the lipid-coated capsules is about 426 Mpa can be obtained.  相似文献   

3.
The hydrogen-bonding multilayered polyelectrolyte capsules with sizes around 6 microm were fabricated by layer-by-layer self-assembly method. The morphology of the obtained capsules was observed with Scanning Electron Microscope (SEM), Confocal Laser Scanning Microscope (CLSM) and Atomic Force Microscope (AFM), respectively. The elastic properties of the capsules were studied with AFM. The capsule was pressed by cantilever with different lengths, a glass bead glued at the end of the cantilever. The force curves were measured on the capsule in air. The Young's modulus of the capsule was obtained (E = 170 MPa for the loading). Results show that this model can predict the elastic deformation of the microcapsule. The accuracy of the elastic deformation of polymer capsule can be ensured using a cantilever of mediate stiffness. Our results show that the existence of the hydrogen-bonding layer makes the multilayered polyelectrolyte harder in comparison with the pure multilayered polyelectrolyte capsules.  相似文献   

4.
We have demonstrated the synthesis of light-sensitive polyelectrolyte capsules (PECs) by utilizing a novel polyol reduction method and investigated its applicability as photosensitive drug delivery vehicle. The nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica particles followed by in-situ synthesis of silver nanoparticles (NPs). Capsules without silver NPs were permeable to low molecular weight (M(w), 479 g/mol) rhodamine but impermeable to higher molecular weight fluorescence labeled dextran (FITC-dextran). However, capsules synthesized with silver NPs showed porous morphology and were permeable to higher molecular weight (M(w) 70 kDa) FITC-dextran also. These capsules were loaded with FITC-dextran using thermal encapsulation method by exploiting temperature induced shrinking of the capsules. During heat treatment the porous morphology of the capsules transformed into smooth pore free structure which prevents the movement of dextran into bulk during the loading process. When these loaded capsules are exposed to laser pulses, the capsule wall ruptured, resulting in the release of the loaded drug/dye. The rupture of the capsules was dependent on particle size, laser pulse energy and exposure time. The release was linear with time when pulse energy of 400 μJ was used and burst release was observed when pulse energy increased to 600 μJ.  相似文献   

5.
文中综述了聚电解质的合成及应用研究进展,探讨了聚电解质制备过程中的影响因素。此外还着重介绍了聚电解质-表面活性剂复合物、层层自组装膜、聚电解质微纳胶囊在药物缓释以及聚电解质在改善纳米材料的制备及性能方面上的应用研究进展。如何开发特定结构的聚电解质,利用聚电解质对外界环境的刺激实现对聚电解质形态结构的实时和有效控制是聚电解质科研领域研究的重点方向。  相似文献   

6.
Liposome-based nanocapsules   总被引:1,自引:0,他引:1  
Here we present three different types of mechanically stable nanometer-sized hollow capsules. The common point of the currently developed systems in our laboratory is that they are liposome based. Biomolecules can be used to functionalize lipid vesicles to create a new type of intelligent material. For example, insertion of membrane channels into the capsule wall can modify the permeability. Covalent binding of antibodies allows targeting of the capsule to specific sites. Liposomes loaded with enzymes may provide an optimal environment for them with respect to the maximal turnover and may stabilize the enzyme. However, the main drawback of liposomes is their instability in biological media as well as their sensitivity to many external parameters such as temperature or osmotic pressure. To increase their stability we follow different strategies: 1) polymerize a two-dimensional network in the hydrophobic core of the membrane; 2) coat the liposome with a polyelectrolyte shell; or 3) add surface active polymers to form mixed vesicular structures.  相似文献   

7.
Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.  相似文献   

8.
Lactobionic acid, bearing a -galactose group, was coupled with poly(allyl amine) to provide synthetic extracellular matrices together with poly(vinyl alcohol) (PVA). The hepatocytes were encapsulated in Ba-alginate capsules with galactosylated poly(allyl amine) (GA) and PVA as extracellular matrices. From microscopic observation, it was revealed that the microcapsule prepared has a highly porous structure with interconnected pores and pore sizes ranging between 50–150 nm on both the surface and the cross-section. It was found, from the permeability experiment of microcapsules using FITC-dextrans with different molecular weights, that the capsule has a molecular weight cut off (MWCO) of 120 kDa, showing the potential that it can function as an immunoprotecting wall. The hepatocytes, cultured with GA and PVA in the core of the microcapsule, rapidly aggregated within a day, thus resulting in good metabolic functions such as albumin synthesis and ammonia removal.  相似文献   

9.
Tannic acid (TA), a high molecular weight polyphenol of natural origin, was assembled in alternation with chitosan (CH) using a layer-by-layer technique. The deposition of tannic acid and chitosan layers on flat supports was monitored by quartz crystal microbalance, UV-vis spectroscopy, and electrophoretic mobility measurements on microparticles. Hollow (TA/CH)4 capsules were built and their permeability as a function of pH and molecular weight of a penetrating compound was investigated. The pH-permeability threshold for TA/CH capsules is shifted to lower pH for 2 pH units, as compared with commonly used polyallylamine/polystyrene sulfonate capsules. A more pronounced dependence of the TA/CH capsules' permeability on molecular weight of encapsulated substances allows better control over their release properties. Bovine serum albumin was loaded into (TA/CH)4 capsules using a pH-driven method and released by decreasing pH. Biocompatible tannic acid/chitosan films and capsules have advantages toward capsules made of synthetic polyelectrolytes for drug encapsulation and as delivery and depot systems. Incorporating a layer of tannic acid with proved antioxidant and antimicrobial properties into capsule walls, provides defense for encapsulated materials.  相似文献   

10.
通过沉淀反应制备MnCO3,以乙醇为添加剂成功制备出分散性好的、具有所需尺寸和很窄的粒径分布的球形MnCO3微粒。采用MnCO3粒子为模板吸附相反电荷聚电解质再除去核来制备纯净中空聚电解质胶囊。对组装到MnCO3上制备出来的中空聚电解质胶囊作了研究。结果表明:这种胶囊代表了仅含有所需物质的微米尺度的独立式的聚电解质膜。粒子表面结构决定了所制备的胶囊的形态和胶囊壁厚度。  相似文献   

11.
Micrometer-sized polyelectrolyte capsules are synthesized, which have ion-sensitive fluorophores embedded in their cavities. As the membranes of the capsules are permeable to ions, the fluorescence of the capsules changed with the ion concentration. In particular, capsules sensitive to protons, sodium, potassium, and chloride ions are fabricated and their fluorescence response analyzed. In order to allow for ratiometric measurements, additional fluorophores whose emission do not depend on the ion concentration and which emit a different wavelength are co-embedded in the capsule cavities.  相似文献   

12.
In this review, the recent achievements in the synthesis of inorganic nanomaterials inside the spatially confined volume of individual micro‐ and submicroreactors (emulsions, micelles, organized thin films, polyelectrolyte capsules, etc.) are presented. The advantages and shortcomings of each type of microreactor are discussed. Particular attention is paid to polyelectrolyte capsules as confined microreactors with controlled shell permeability and the possibility of shell engineering on the nanolevel, thus tailoring different functionalities. Nanomaterials synthesized inside a confined multifunctional microreactor have several advantages: i) absence of particle aggregates, ii) amorphous or metastable crystal phases, and iii) unique composite inorganic/inorganic and inorganic/organic structures.  相似文献   

13.
An experimental apparatus was developed to investigate the supercooling phenomenon of pure water inside cylindrical capsules used for cold storage process. The Phase Change Material (PCM) used was distilled water. The external coolant material was a water–alcohol mixture (50% vol.), controlled by a constant temperature bath (CTB) in four fixed values (?4 °C, ?6 °C, ?8 °C, and ?10 °C). Temperatures varying with time were measured inside and outside the capsule. Cylindrical capsules with internal diameter of 30 mm, 45 mm, and 80 mm, with 1.5 mm wall thickness were made in aluminum, bronze or acrylic materials. The Cooling Rate (CR) was investigated for different positions on the internal wall of the capsule, for different external coolant temperatures (Tc), different capsules diameters and different materials. The results showed that the cooling rate is a strong function of the angular position on the internal wall, the coolant temperature, the capsule material, and the capsule's diameter.  相似文献   

14.
The objective of this study was to investigate the weight and weight uniformity of hard gelatin capsules filled with microcrystalline cellulose (MCC) and silicified microcrystalline cellulose (SMCC) powdered formulations. A tamping-type encapsulation apparatus was used to fill the capsules. The four formulations that were tested included MCC alone, MCC blended with fumed silica, SMCC, and high-density SMCC (SMCC-HD). The mean capsule weight and the average variation in mean capsule weight of each formulation were determined. Both SMCC products exhibited better flow than the MCC alone, with SMCC-HD being the freest flowing of the powders investigated. Capsules filled with the SMCC products had higher fill weights than those containing the MCC powders. The SMCC-containing capsules exhibited the lowest variation in weight, although these findings were not significantly different from either of the MCC-containing capsules. Significantly higher weight variations were found in capsules filled with SMCC-HD. A relationship between Carr's compressibility index and capsule weight variation was found, with more compressible materials producing more uniformly filled capsules. No relationship could be established between powder flow and capsule weight uniformity. These findings suggest that powder flow may not be a critical parameter in ensuring capsule weight uniformity when the encapsulation equipment utilizes a tamping-type filling system.  相似文献   

15.
Poly(vinyl pyrrolidone) and poly(methacrylic acid) multilayer capsules based on hydrogen bonding have been prepared by the layer-by-layer approach and used to encapsulate and release rifampicin, an anti-tuberculosis drug. Removal of silica core using a buffer of ammonium fluoride and hydrofluoric acid at about pH 3 was found to produce better capsules than hydrofluoric acid alone. An eight-layered capsule had a wall thickness of 20 nm. Maximum encapsulation was found to be about 86 μg at 40 °C with 1 ± 0.2 × 106 capsules. Release studies showed a burst kind of release and maximum release was obtained above pH 7 where the capsules disintegrate rapidly thereby releasing the drug in a short period. Interactions studies with Mycobacterium smegmatis showed that the capsules were cytocompatible and the released drug functioned with the same efficacy as the free drug.  相似文献   

16.
Development of suitable capsules is essential to achieve self-healing by encapsulation. In the context of self-healing concrete, capsules that can be easily mixed into concrete and release the healing agent when cracking occurs are ideally required. The optimization of these properties would allow for a successful implementation at large scale in practical (concrete) applications. In the present work, the suitability of polymeric cylindrical capsules made of poly(methyl methacrylate) (PMMA) to carry healing agent in self-healing concrete has been evaluated. An innovative method to assess more easily the capsules survival during concrete mixing was developed. This method is based on the evaluation of the setting behavior of concrete containing capsules filled with setting accelerator. Capsules with a wall thickness of 0.7 mm were able to resist the concrete mixing process and to rupture at relatively small crack widths (116 μm) after applying a surface treatment to increase the adhesion between the capsules and the cementitious matrix. Next, the self-healing efficiency of the encapsulation materials (glass or PMMA) was evaluated on real-scale concrete beams. The results showed that cracked concrete beams with mixed-in capsules (glass or PMMA) filled with water-repellent agent showed higher resistance against chloride ingress compared to plain cracked concrete beams. PMMA capsules showed a lower self-healing efficiency (in relation to chloride ingress) compared to glass due to a less favorable distribution of the capsules in the concrete. However, concrete containing glass capsules is susceptible towards alkali-silica reaction.Although optimization of the PMMA capsules is still necessary to improve their distribution in concrete and achieve higher self-healing efficiency, the obtained results indicate that these capsules could be a promising solution towards self-healing concrete.  相似文献   

17.
ABSTRACT

The objective of this study was to investigate the weight and weight uniformity of hard gelatin capsules filled with microcrystalline cellulose (MCC) and silicified microcrystalline cellulose (SMCC) powdered formulations. A tamping-type encapsulation apparatus was used to fill the capsules. The four formulations that were tested included MCC alone, MCC blended with fumed silica, SMCC, and high-density SMCC (SMCC-HD). The mean capsule weight and the average variation in mean capsule weight of each formulation were determined. Both SMCC products exhibited better flow than the MCC alone, with SMCC-HD being the freest flowing of the powders investigated. Capsules filled with the SMCC products had higher fill weights than those containing the MCC powders. The SMCC-containing capsules exhibited the lowest variation in weight, although these findings were not significantly different from either of the MCC-containing capsules. Significantly higher weight variations were found in capsules filled with SMCC-HD. A relationship between Carr's compressibility index and capsule weight variation was found, with more compressible materials producing more uniformly filled capsules. No relationship could be established between powder flow and capsule weight uniformity. These findings suggest that powder flow may not be a critical parameter in ensuring capsule weight uniformity when the encapsulation equipment utilizes a tamping-type filling system.  相似文献   

18.
One of the most promising tools for future applications in science and medicine is the use of nanotechnologies. Especially self-assembly systems, e.g., polyelectrolyte (PE) capsules prepared by means of the layer-by-layer technique with tailored properties, fulfill the requirements for nano-organized systems in a satisfactory manner. The nano-organized shells are suitable as coating for living cells or artificial tissue to prevent immune response. With these shells, material can be delivered to predefined organs. In this paper, some preliminary results are presented, giving a broad overview over the possibilities to use nano-organized capsules. Based on the observations that the cells while duplicating break the capsule a mutant yeast strain (Saccharomyces cerevisiae), which express GFP-tubulin under galactose promotion, was investigated by means of confocal laser scanning microscopy. The measurements reveal an increased surface charge in the region of buds developed prior encapsulation. In order to test the used PE pair for cytotoxicity, germinating conidia of the fungi Neurospora crassa were coated. The investigation with fluorescence microscopy shows a variation in the surface charge for the growing region and the conidium poles. The capsules exhibit interesting properties as valuable tool in science and a promising candidate for application in the field of medicine.  相似文献   

19.
CdS–polyelectrolyte (CdS–PE) clusters were synthesized by using polyelectrolyte as the stabilizing agent in the aqueous solution. The blue shift of UV–Vis and Fluorescent spectra, the TEM images show the formation of nanoparticles within the polyelectrolyte chains. Using the normal polyelectrolyte hollow capsules as template, the CdS–PE clusters as functional layer materials, the uniform organic–inorganic hollow microspheres have been produced by layer-by-layer (LbL) self-assembly technology.  相似文献   

20.
The purpose of this study was to examine the application of ultraviolet (UV) laser irradiation to printing hard gelatin capsule shells containing titanium dioxide (TiO2) and to clarify how the color strength of the printing by the laser could be controlled by the power of the irradiated laser. Hard gelatin capsule shells containing 3.5% TiO2 were used in this study. The capsules were irradiated with pulsed UV laser at a wavelength of 355?nm. The color strength of the printed capsule was determined by a spectrophotometer as total color difference (dE). The capsules could be printed gray by the UV laser. The formation of many black particles which were agglomerates of oxygen-defected TiO2 was associated with the printing. In the relationship between laser peak power of a pulse and dE, there were two inflection points. The lower point was the minimal laser peak power to form the black particles and was constant regardless of the dosage forms, for example film-coated tablets, soft gelatin capsules and hard gelatin capsules. The upper point was the minimal laser peak power to form micro-bubbles in the shells and was variable with the formulation. From the lower point to the upper point, the capsules were printed gray and the dE of the printing increased linearly with the laser peak power. Hard gelatin capsule shells containing TiO2 could be printed gray using the UV laser printing technique. The color strength of the printing could be controlled by regulating the laser energy between the two inflection points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号