首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
5A30铝合金板高温拉伸本构关系研究   总被引:1,自引:0,他引:1  
采用拉伸试样在Gleeble-1500材料热模拟试验机上对5A30铝合金进行高温拉伸实验,研究了该合金在变形温度为300~500℃,应变速率在0.01~10 s-1的高温流变变形行为。结果表明:变形温度和应变速率对该合金流变应力的大小有显著影响。流变应力随变形温度的升高而降低,随着应变速率的增加而升高。5A30铝合金的高温流变行为可用Zener-Hollomon参数描述,从流变应力、应变速率和变形温度的相关性,得出了该铝合金板材高温变形的材料常数和本构方程。计算出5A30铝合金板的变形激活能为Q=201.1 kJ.mol-1,材料常数为A=7.44×1013 s-1,n=4.3135,α=0.02 mm2.N-1;计算得到了5A30铝合金Arrhenius方程;利用双曲正弦模型,得到高温拉伸峰值应力和Z参数的解析式。  相似文献   

2.
采用Gleeble-1500D热模拟试验机研究机械合金化制备的ODS-310合金在变形温度为1 050~1 150℃、应变速率为0.001~1 s-1条件下的高温变形行为,测定其真应力-应变曲线,分析其流变应力与应变速率及变形温度三者之间的关系,并采用Zener-Hollomon参数法建立ODS-310合金的高温变形本构方程,基于动态材料模型,构造ODS-310合金的热加工图。结果表明:ODS-310合金的流变应力随变形温度降低或应变速率提高而增大;该合金热变形过程中的流变行为可用双曲线正弦模型来描述,在实验条件下的平均变形激活能为828.384 kJ/mol;真应变为0.4的热加工图表明,ODS-310合金在高温变形时存在2个加工失稳区,即变形温度为1 050~1 070℃、变形速率为0.01~1s-1的区域,和变形温度为1 130~1 150℃、变形速率为0.1~1 s-1的区域;ODS-310合金的最佳变形温度和应变速率分别为1 150℃和0.001 s-1。  相似文献   

3.
Ti-5523钛合金热变形流变行为的研究   总被引:6,自引:6,他引:0  
采用恒应变速率高温压缩模拟实验,对Ti-5523钛合金在应变速率为0.001~5.0 s-1,变形温度为600.900℃条件下的流变应力行为进行了研究,计算了变形激活能及相应的应力指数,建立了合金的应力.应变关系方程.结果表明:在恒温条件下,合金的流变应力随应变速率的增大而增大;在恒应变速率条件下.合金的流变应力随温度的升高而降低;变形激活能和应力指数分别为Q=317.811 kJ·mol-1和n=4.43;可用包含Arrhenius项的Zener-Hollomon参数描述Ti-5523钛合金高温塑性变形时的流变行为.  相似文献   

4.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

5.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了GH690合金在变形温度为950~1250℃、应变速率为0.001~10s<'-1>条件下的热变形行为,采用金相显微镜对GH690合金热模拟试样的纵截面变形组织进行观察.结果表明:应变速率和变形温度对合金的流变应力与变形组织有显著影响.流变应力随变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感的材料;动态再结晶晶粒尺寸随应变速率的增加而减小,随变形温度的增大而增大.采用Zener-Hollomon参数的双曲正弦函数能较好地描述GH690合金高温变形时的流变行为,得到峰值应力表达式,GH690合金的热变形激活能Q为370.4 kJ·mol<'-1>.  相似文献   

6.
彭建  韩韡  彭毅  潘复生 《稀有金属》2014,(3):341-347
采用热扭转试验机对ME21镁合金在300~450℃、等效应变速率0.0100~0.0001 s-1范围内进行扭转试验,研究合金的热变形行为,利用Zener-Hollomon参数法通过数学分析构建了ME21合金基于热扭转试验的高温塑性变形的本构方程。结果表明:ME21镁合金在扭转温度450℃,等效应变速率0.01 s-1时,合金在断裂前的扭转圈数可以达到2.5圈,等效应变可达到1.1以上,在此种工艺下可以获得较高的热加工塑性。ME21镁合金在不同温度和不同应变速率下的热扭转过程中,硬化与软化的同时作用使得其流变过程的应力-应变曲线差异较大,扭转变形后均可得到再结晶组织,但是组织的差异也较大,再结晶晶粒尺寸取决于温度补偿应变速率参数Z的大小。合金本构方程为σ=1/0.03159ln{(Z1.547×106)1/2.4302+[(Z/1.547×106)2/2.4302+1]1/2},以此计算的流变应力的预测值与试验值相对误差平均值小于5%。ME21合金热扭转的变形激活能为Q=117.34 kJ·mol-1。  相似文献   

7.
Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金的热变形研究   总被引:2,自引:2,他引:0  
采用Gleeble-1500热模拟机进行恒温和恒速压缩变形实验,变形温度范围为400~460 ℃,应变速率为0.001~0.1 s-1.研究了Al-Cu-Mg-Ag-Zr合金在高温塑性变形过程中流变应力的变化规律,确定了合金的变形激活能Q和应力指数n.结果表明:流变速率和变形温度对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随应变速率的提高而增大.可用包含Arrhenius项的Zener-Hollomon参数描述该合金高温塑性变形时的流变行为.  相似文献   

8.
研究了铸轧AZ31镁合金的高温拉伸性能和变形机制.在300~450℃条件下,分别以恒定拉伸速率10-3 s-1和10-2 s-1进行拉伸至失效试验,在真实应变率为2×10-4~2×10-2 s-1的范围内进行变应变率拉伸试验.当拉伸速率为10-2s-1时,试样在400℃和450℃的延伸率均超过100%;当拉伸速率为10-3 s-1时,试样在400℃和450℃的延伸率均超过200%,该条件下的应力指数n≈3,蠕变激活能Q=148.77 kJ·mol-1,变形机制为溶质牵制位错蠕变和晶界滑移的协调机制.通过光学金相显微镜和扫描电子显微镜观察显示试样断口处存在由于发生动态再结晶和晶粒长大而形成的粗大晶粒,断裂形式为空洞长大并连接导致的韧性断裂.   相似文献   

9.
Hastelloy C-276镍基合金的热压缩变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟试验机研究了Hastelloy C-276镍基合金在0.01~10 s-1、1000~1250℃、应变量0.7条件下的高温恒温压缩变形行为,对热压缩后的组织进行了金相显微分析。结果表明:C-276合金热变形流变应力随着应变速率的增大和变形温度的降低而增大。热变形过程中发生了动态再结晶,当温度T≥1200℃时,发生了完全动态再结晶,T<1200℃时,发生部分动态再结晶。热变形流变应力可用Zener-Hollomon参数来描述,根据修正后的流变应力曲线建立了Hastelloy C-276合金峰值应力下的高温变形本构方程,热变形材料常数为:激活能Q=446.51 kJ·mol-1,α=0.0037346,n=4.42851,A=1.11×1016。  相似文献   

10.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.   相似文献   

11.
采用Gleeble-3500热模拟实验机对Cu-Cr-Zr合金进行了压缩变形实验,分析了在变形温度为25~700℃、应变速率为0.0001~0.1000s-1的条件下流变应力的变化规律,利用扫描电镜及透射电镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且变形温度和应变速率均对流变应力有显著的影响,流变应力随着变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感材料;当变形温度为400~500℃时,低应变速率(0.0001~0.0010 s-1)的真应力-真应变曲线呈现动态再结晶曲线特征,高应变速率(0.01~0.10 s-1)的真应力-真应变曲线呈现动态回复特征;在真应力-真应变曲线的基础上,采用双曲正弦模型能较好地描述Cu-Cr-Zr合金高温变形时的流变行为,建立了完整描述合金热变形过程中流变应力与应变速率和变形温度关系的本构方程,确定了合金的变形激活能为311.43 kJ·mol-1。  相似文献   

12.
采用MMS-300热模拟实验机研究纯钼在变形温度为900~1 300℃和应变速率为0.004~1 s-1条件下的高温塑性变形行为。分析了纯钼流变应力与应变速率、变形温度之间的关系,计算了纯钼高温塑性变形时的变形激活能。研究结果表明:纯钼在热变形过程中流变应力随应变速率的增加而增加,随温度的升高而降低,且其高温塑性变形行为可以用Zener-Hollomon参数的流变应力方程进行描述。该纯钼在实验条件范围内发生了明显的动态回复与动态再结晶。  相似文献   

13.
镍基耐蚀合金GH536B(G3)的高温变形特性   总被引:1,自引:0,他引:1  
通过Thermomacmaster-Z热模拟机试验和显微组织观察,研究了镍基耐蚀合金GH536B(G3,%:0.002C、20.30Cr、17.50Fe、8.70Mo、1.32W、1.90Cu、0.20Nb)1 030~1 300℃、应变速率1~25 s-1的应力-应变曲线以及温度对合金断面收缩率的影响,高温变形下合金组织的变化和应变速率对合金动态再结晶温度的影响.结果表明,G3合金变形抗力大,热成形温度区间小,随应变速率增大,热塑性降低;Φ中10 mm×140 mm试样拉伸速率为100 mm·s-1,合适的成形温度为1 130~1 260℃,当拉伸速率为200 mm·s-1,合适的成形温度为1 130~1 220℃.  相似文献   

14.
研究了Cr17铁素体不锈钢在高温拉伸试验过程中应变速率对合金断面收缩率的影响,并对其发生机制进行了分析。合金在500℃下以不同应变速率(1.43×10-6~1.33s-1)拉伸至断裂,测试断面收缩率,并利用电子探针对晶界成分进行了观察测试。结果表明:应变速率从1.43×10-6 s-1升高至1.43×10-2 s-1,断面收缩率降低,约在1.43×10-2 s-1时达到最低值。然后,随着应变速率增加至1.33s-1,断面收缩率升高。经电子探针测试证实,断面收缩率达到最低值的样品,硫在晶界上偏聚,其他应变速率拉伸的样品没有观察到硫的晶界偏聚。基于多晶金属弹性变形的微观理论,分析这些试验结果,证实了此合金在拉伸试验中具有应变速率脆性的基本特征——临界应变速率。  相似文献   

15.
采用Gleeble-1500D热模拟机进行热压缩变性试验,研究7N01铝合金在变形温度为340 ~460℃、应变速率为0.01~ 10.00 s-1条件下的流变应力行为.结果表明:变形温度和应变速率对合金流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增加而升高;合金在低应变速率(0.01,0.10,1.00s-1)时主要为动态回复软化机制,而在高应变速率(10.00 s-1)时出现动态再结晶软化;7N01铝合金的高温流变行为可用Zener-Hollomon参数描述.  相似文献   

16.
在应变速率为0.01~10.00 s-1、变形温度为700~850℃的条件下,通过热压缩实验研究Cu-Ag合金的高温流变行为,发现该合金高温流变应力对温度和应变速率比较敏感,且在不同条件下呈现的软化特征也有区别。通过双曲正弦本构方程和线性回归分析,得到了不同变形条件下,关于结构因子、材料参数、以及热变形激活能的6次多项式方程,从而建立了随材料参数变化的Cu-Ag合金流变应力本构模型。根据动态材料模型(DMM)建立功率耗散图和失稳图,并通过叠加得到Cu-Ag合金的热加工图,然后,利用热加工图确定了该合金的加工安全区和流变失稳区。分析可知Cu-Ag合金的最佳变形工艺参数主要处于3个区间:低温低应变速率区(变形温度为700~770℃,应变速率为0.0100~0.0316 s-1),该区域的峰值功率耗散系数η为0.46;高温中应变速率区(变形温度为780~835℃,应变速率为0.1~1.0 s-1),该区域的峰值功率耗散系数η为0.33;和高温高应变速率区(变形温度为835~850℃,应变速率为3.162~10.000 s-1),该区域的功率耗散系数η峰值为0.33。  相似文献   

17.
采用Gleeble 3800热模拟实验机研究了Monel K-500合金在变形温度为850~1 100℃,应变速率为0.01~10s-1时的高温流变行为,测定了合金在不同条件下的流变应力曲线。结果表明,最大压缩变形量对合金的流变行为影响不大;变形温度相同时,合金在应变速率为0.1s-1时取得最大峰值应变;根据Arrhenius模型得到了合金的热变形本构方程。  相似文献   

18.
采用Gleeble-1500热模拟试验机,对30%SiCp/2024A1复合材料在温度为350~500℃、应变速率为0.01~10 s-1条件下进行热压缩试验,研究该合金的热变形行为与热加工特征,建立热变形本构方程和加工图。结果表明,30%SiCp/2024A1复合材料的流变应力随温度升高而降低,随应变速率增大而升高,说明该复合材料是1个正应变速率敏感的材料,其热压缩变形时的流变应力可采用Zener-Hollomon参数的双曲正弦形式来描述,在实验条件下平均热变形激活能Q为334.368 kJ/mol。热加工图表明30%SiCp/2024Al复合材料最适合加工的条件是变形温度为500℃,应变速率为0.01 s-1  相似文献   

19.
TB2钛合金热压缩变形流变应力   总被引:2,自引:0,他引:2  
在Gleeble-1500D热/力模拟试验机上,采用高温等温压缩试验,对TB2钛合金在高温压缩变形中流变应力行为进行了研究;应变速率为0.01-10 s^-1,变形温度为600-1200℃。结果表明:应变速率和变形温度的变化显著地影响合金流变应力的大小,流变应力随变形温度的升高而降低,随应变速率的提高而增大;可用Zener-Hollomon参数的双曲正弦函数形式来描述合金的流变应力行为。  相似文献   

20.
新型Al-Zn-Mg-Cu合金热变形流变应力特征   总被引:5,自引:4,他引:1  
采用Gleeble-1500热模拟机进行热压缩变形实验,研究了一种新型Al-7.5Zn-1.6Mg-1.4Cu-0.12Zr合金在变形温度为380-460℃、应变速率为0.001~0.1 s-1条件下的流变应力特征,并利用TEM分析了合金在不同变形条件下的组织形貌特征.结果表明,应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随应变速率的提高而增大;合金平均亚晶尺寸随温度补偿应变速率Zener-Hollomon参数的升高而减小.可用Zener-Hollomon咖参数描述该Al-Zn-Mg-Cu合金热变形时的流变应力行为.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号