首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
热阴极DC-PCVD方法制备的金刚石厚膜的生长特性和内应力   总被引:8,自引:5,他引:3  
采用热阴极DC PCVD(DirectCurrentPlasmaChemicalVaporDeposition)方法制备出大尺寸高质量的金刚石厚膜,研究了金刚石厚膜的生长特性和内应力状态。由热阴极DC PCVD方法制备的金刚石厚膜大多数为〈110〉取向,表面显露面主要是(100)面和(111)面,厚膜的表面被较多的孪晶所覆盖,部分(111)面退化为3个相互垂直的(110)面,孪晶使厚膜表面结晶特性复杂化,金刚石厚膜的晶粒沿生长方向呈现柱状生长。金刚石厚膜的生长速率随甲烷流量和工作气压的增加而增加,但随生长速率的提高金刚石膜的品质明显下降。金刚石厚膜的内应力以压应力为主,随着甲烷浓度的增加压应力增加,随着工作气压的增加压应力减小,到某个气压之后变为张应力。  相似文献   

2.
采用自主改进的圆柱谐振腔式MPCVD装置,以H2-CH4为气源、反应腔压强30kPa、微波功率6kW、CH4浓度2%,在不同的沉积温度下进行了多晶金刚石膜的制备研究。采用扫描电镜、X-射线衍射技术对所制备样品的表面形貌、物相及晶面取向进行了分析。结果表明,在高气压条件下,沉积温度由800℃升高至900℃时,金刚石膜的表面形貌由(111)晶面择优取向逐渐转向(100)晶面择优取向;沉积温度由900℃升高至1050℃时,金刚石的表面形貌由(100)晶面择优取向逐渐转向(111)晶面择优取向。  相似文献   

3.
在低合金钢基体上磁控溅射镀Cr/Cu双层膜,电沉积铜-金刚石复合过渡层,在热丝CVD系统中沉积了连续的金刚石膜。用压痕实验研究了所沉积的金刚石膜/基结合性能,用扫描电镜(SEM)、X射线(XRD)、拉曼光谱表征了金刚石膜的表面形貌、相结构和内应力。结果表明,经CVD金刚石沉积后Cr层转化为铬铁碳化物层,阻止了Fe对界面金刚石的石墨化,并部分缓冲相变应力;较软的Cu层能有效缓解相变应力和热应力,降低了所沉积的金刚石膜内应力;用441N载荷对所沉积的金刚石膜进行压痕评估,压痕外缘只产生环状裂纹,表明膜基结合力较高。  相似文献   

4.
无支撑、光学级MPCVD金刚石膜的研制   总被引:1,自引:0,他引:1  
利用引进的6 kW微波等离子体化学气相沉积设备,进行了无支撑金刚石膜工艺的初步研究。在800~1050℃的基片温度范围内,金刚石膜都呈(111)择优取向;基片相对位置对沉积较大面积、光学级金刚石膜至关重要。制出0.25 mm厚Φ50 mm的无支撑金刚石膜。拉曼光谱和X射线衍射分析表明,合成的金刚石膜晶体结构完整,sp2含量极低;透过率测试结果说明了优良的光学性能:截止波长225 nm,光学透过率(λ≥2.5μm)≥70%。  相似文献   

5.
纳米金刚石薄膜具有优异的性能,已在多个领域获得广泛应用.但微波等离子体化学气相沉积制备的金刚石薄膜质量却严重受沉积工艺的影响,为了深入了解沉积工艺对制备的金刚石薄膜质量的影响,本文详细研究了甲烷浓度对微波等离子体化学气相沉积( MPCVD)金刚石薄膜质量的影响,利用扫描电镜、X射线衍射、拉曼光谱以及原子力显微镜对其进行...  相似文献   

6.
热阴极辉光放电对金刚石膜沉积的影响   总被引:2,自引:0,他引:2  
研究了在热阴极辉光放电等离子体化学气相沉积金刚石膜过程中,热阴极辉光放电特性与金刚石膜沉积工艺的关系.结果表明,适当的阴极温度是保证大电流、高气压辉光放电的必要条件.阴极的温度影响辉光放电阴极位降区的放电性质.金刚石膜的沉积速率随着气体压力(16~20kPa)的升高而上升,在18.6kPa左右出现最高值,而阳极位降区电场强度的降低使膜品质下降.放电电流(8~12A)对沉积速率的影响与气体压力的影响具有相似的规律.  相似文献   

7.
类金刚石薄膜内应力的测试   总被引:2,自引:0,他引:2  
采用射频-直流等离子增强化学气相沉积法制备出类金刚石薄膜,用弯曲法测定薄膜的内应力。结果表明,类金刚石薄膜中存在1~4.7GPa的压应力,沉积工艺对薄膜的内应力有很大的影响,薄膜的内应力随极板负偏压的升高而降低,陆C_2H_2气体含量的增加而增大。  相似文献   

8.
采用微波等离子体化学气相沉积法,以H_2/CH_4/CO_2为混合气源,通过改变气源碳氧比,探讨了碳氧比对金刚石薄膜生长的影响。利用扫描电子显微镜(SEM)、X射线衍射(XRD)和Raman光谱表征金刚石薄膜的表面形貌、晶粒取向和结晶质量。结果表明,随着C/O比的降低,金刚石膜表面形貌由原来的(100)面为主转向(111)面为主的金字塔形,薄膜质量有所提高,内应力降低。  相似文献   

9.
为解决镍基金刚石复合电沉积过程中普遍存在镀层沉积速率慢、镀层内应力大的问题,本工作以新型高速Ni镀液为基础,考查了镀液中去应力添加剂含量、工艺参数,以及金刚石含量对镀层内应力影响的规律,并对复合镀层的微观形貌进行了表征。优选出了可以在30A/dm2的高阴极电流密度下快速电沉积低应力镍基金刚石复合镀层的镀液组成及工艺条件。结果表明:当镀液组成为十二烷基硫酸钠0.5g/L,乙酸铵3g/L,柠檬酸三钠1.5g/L,金刚石微粒浓度30g/L;施镀条件为pH值3~4,温度50℃时,制得的复合镀层内应力最低。  相似文献   

10.
热丝CVD大面积金刚石薄膜的生长动力学研究   总被引:1,自引:0,他引:1  
在传统工业型热丝化学气相沉积(HFCVD)反应腔内,相关工艺参数取模拟计算优化值的条件下,采用XRD,SEM及Raman光谱等分析手段研究了单晶Si(100)上较大面积金刚石薄膜的动力学生长行为,讨论了晶格取向的变化规律。结果表明:优化工艺参数条件下,在模拟计算的衬底温度和气体温度分布均匀的区域内,沉积的金刚石薄膜虽存在一定的内应力,但整体薄膜连续、均匀,几何晶形良好,质量较高,生长速率达1.8μm/h。薄膜生长过程中晶形显露面受衬底温度和活性生长基团浓度的影响较大。  相似文献   

11.
Ultrasmooth nanostructured diamond (USND) films were synthesized on Ti-6Al-4V medical grade substrates by adding helium in H(2)/CH(4)/N(2) plasma and changing the N(2)/CH(4) gas flow from 0 to 0.6. We were able to deposit diamond films as smooth as 6 nm (root-mean-square), as measured by an atomic force microscopy (AFM) scan area of 2 μm(2). Grain size was 4-5 nm at 71% He in (H(2) + He) and N(2)/CH(4) gas flow ratio of 0.4 without deteriorating the hardness (~50-60 GPa). The characterization of the films was performed with AFM, scanning electron microscopy, x-ray diffraction (XRD), Raman spectroscopy, and nanoindentation techniques. XRD and Raman results showed the nanocrystalline nature of the diamond films. The plasma species during deposition were monitored by optical emission spectroscopy. With increasing N(2)/CH(4) feedgas ratio (CH(4) was fixed) in He/H(2)/CH(4)/N(2) plasma, a substantial increase of CN radical (normalized by Balmer H(α) line) was observed along with a drop in surface roughness up to a critical N(2)/CH(4) ratio of 0.4. The CN radical concentration in the plasma was thus correlated to the formation of ultrasmooth nanostructured diamond films.  相似文献   

12.
Nanostructured diamond films are grown on a titanium alloy substrate using a two-step deposition process. The first step is performed at elevated temperature (820 degrees C) for 30 min using a H2/CH4/N2 gas mixture to grow a thin (approximately 600 nm) nanostructured diamond layer and to improve film adhesion. The remainder of the deposition involves growth at low temperature (< 600 degrees C) in a H2/CH4/O2 gas mixture. The continuation of the smooth nanostructured diamond film growth during low-temperature deposition is confirmed by in situ laser reflectance interferometry, atomic force microscopy, micro-Raman spectroscopy, and surface profilometry. Similar experiments performed without the initial nanostructured diamond layer resulted in poorly adhered films with a more crystalline appearance and a higher surface roughness. This low-temperature deposition of nanostructured diamond films on metals offers advantages in cases where high residual thermal stress leads to delamination at high temperatures.  相似文献   

13.
利用SiH4(80%Ar稀释)和CH4作为源气体,通过改变源气体流量比、基片温度、沉积气压等参量,使用微波电子回旋共振化学气相沉积法生长非晶碳化硅薄膜。实验结果表明碳化硅薄膜沉积速率随气体流量比R(CH4/(CH4+SiH4))的增加而减小、随基片温度的升高明显减小、随沉积气压的增加先增大后减小。红外结构表明:在较低流量比R下,薄膜主要由硅团簇和非晶碳化硅两相组成,而当R>0.5时,薄膜的结构主要由非晶碳化硅组成,薄膜中键合的H主要是Si和C的封端原子。同时,沉积温度的升高使碳化硅薄膜中Si-H,C-C和C-H键的含量减少,而薄膜中Si-C含量明显增加且峰位发生了红移。薄膜相结构的转变是薄膜光学带隙变化的原因。  相似文献   

14.
CO2对MPCVD制备金刚石膜的影响研究   总被引:1,自引:0,他引:1  
应用微波等离子体化学气相沉积(MPCVD)技术,以CH4/H2/N2为主要气源,通过添加CO2辅助气体,并与未添加CO2辅助气体进行对比,进行了金刚石膜沉积。研究了添加不同浓度CO2对生长金刚石膜的影响。结果表明:当CO2流量在0~25cm3/min范围变化时,金刚石膜表面粗糙度分别为8.9nm、6.8nm、9.2nm、9.6nm。表明适量引入CO2可以降低膜面粗糙度,但是进一步提高CO2流量,膜面粗糙度反而上升。同时当CO:流量在0~15cm3/min范围变化时,金刚石膜的品质和生长都表现出上升趋势,但是超过该流量,其品质和生长率都出现下降趋势。另外,当CO2流量为15cm3/min,生长的金刚石膜不仅品质好,而且生长率也较高。  相似文献   

15.
Although large focus has been placed into the deposition of nanocrystalline and ultra-nanocrystalline diamond films, most of this research uses microwave plasma assisted CVD systems. However, the growth conditions used in microwave systems cannot be directly used in hot-filament CVD systems. This paper, aims to enlarge the knowledge of the diamond film depositing process. H2/CH4/Ar gas mixtures have been used to deposit micro, nano and ultra-nanocrystalline diamond films by hot-filament CVD systems. Additionally, the distance between the filaments array and the substrate was varied, in order to observe its effect and consequently the effect of a lower substrate temperature in the nucleation density and deposition. All the samples were characterized for microstructure and quality, using scanning electron microscopy and Raman spectroscopy.  相似文献   

16.
HFCVD金刚石膜过程的气氛模拟与分析   总被引:1,自引:0,他引:1  
对热丝法化学气相沉积金刚石膜过程的气氛进行了模拟与分析。使用GRI-Mech3.0甲烷燃烧过程C/H/O/N四元体系热化学反应机理和动力学数据,模拟并分析了HFCVD金刚石膜的C/H气相化学反应,通过对反应流的简单模拟得到了衬底位置气相组成,结果与前人实验数据吻合,探讨了灯丝温度、碳源浓度和碳源种类等因素变化对衬底位置气相组成的影响。结果表明甲基是金刚石膜生长最主要的前驱基团,其作用远高于乙炔,而超平衡态原子氢的存在对金刚石膜的质量至关重要。  相似文献   

17.
This paper presents a systematic study on diamond growth on copper by microwave plasma chemical vapour deposition (MPCVD). It includes the following four main parts. 1. Effect of substrate pre-treatment on diamond nucleation. 2. Effect of deposition conditions on diamond nucleation and growth. 3.Preparation of free-standing diamond films using copper substrate. 4. Adherent diamond coating on copper using an interlayer. In the first part we show that diamond nucleation on copper is strongly affected by the substrate pre-treatment. The residues of abrasives left in the surface of the copper substrate play an important role in the diamond nucleation. In the second part we show that the diamond growth rate increases with microwave power and gas pressure. The effect of the microwave power is mainly an effect of substrate temperature. Increasing methane concentration results in a higher nucleation density and higher growth rate, but at the cost of a lower film quality. Gas flow rate has little influence on the diamond nucleation density and growth rate. In the third part we demonstrate the possibility of preparing large area free-standing diamond films using copper substrate, which has nearly no carbon affinity and usually leads to weak adhesion of the diamond films. The normally observed film cracking phenomenon is discussed and a two-step growth method is proposed for stress release. In the fourth part we show that adherent diamond coating on copper can be obtained using a titanium interlayer. Residual stress in the films is evaluated by Raman spectroscopy. It is found that with increase in the film thickness, the diamond Raman line shifts from higher wave numbers to lower, approaching 1332 cm–1. The stress variation along the depth of the film is also analysed using Airy stress theory.  相似文献   

18.
CVD金刚石薄膜(111)与(100)取向生长的热力学分析   总被引:1,自引:0,他引:1  
用非平衡热力学耦合模型计算了CVD金刚石薄膜生长过程中C2H2与CH3浓度之比[C2H2]/[CH3]随衬底温度和CH4浓度的变化关系,从理论上探讨了金刚石薄膜(111)面和(100)面取向生长与淀积条件的关系。在衬底温度和CH4浓度由低到高的变化过程中,[C2H2]/[CH3]逐渐升高,导致金刚石薄膜的形貌从(111)晶面转为(100)晶面。添加氧后C2H2与CH3浓度都将下降,但C2H2下降得更多,因而添加氧也使[C2H2]/[CH3]下降,从而有利于生长(111)晶面的金刚石薄膜。  相似文献   

19.
M.J. Chiang  M.H. Hon 《Thin solid films》2008,516(15):4765-4770
High nucleation density and crystalline diamond films were deposited on a mirror-polished Si(100) substrate by horizontal microwave plasma chemical vapor deposition using a two step process consisting of positive direct current (dc) bias enhanced nucleation and growth. Optical emission spectroscopy was employed to investigate in situ the plasma emission characterization during positive biasing process. Emission lines from the Balmer series of atomic hydrogen, molecular hydrogen, CH, C2, and Ar were observed in the visible and ultraviolet ranges when CH4, H2, and Ar were used as the reactant gases. The dependence of plasma emission spectra on the deposition parameters, such as biasing voltage, methane concentration and working pressure was investigated. The relative concentrations of neutral atomic hydrogen were estimated by using the Ar emission at 750.4 nm as an actinometer. A significant variation in the emission intensity of the radicals was measured with a change in the biasing voltage. The correlation between the spectra of some species and the quality of diamond films was studied. The results show that CH and C2 both were important precursor in the diamond deposition, while C2 was associated with the presence of amorphous phase in the films during positive dc biasing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号