首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell biologists probing the physiologic movement of macromolecules and solutes across the fenestrated microvascular endothelial cell have used electron microscopy to locate the postulated pore within the fenestrae. Prior to the advent of in-lens field-emission high-resolution scanning electron microscopy (HRSEM) and ultrathin m et al coating technology, quick-freeze, platinum-carbon replica and grazing thin-section transmission electron microscopy (TEM) methods provided two-dimensional or indirect imaging methods. Wedge-shaped octagonal channels composed of fibrils interwoven in a central mesh were depicted as the filtering structures of fenestral diaphragms in images of platinum replicas enhanced by photographic augmentation. However, image accuracy was limited to replication of the cell surface. Subsequent to this, HRSEM technology was developed and provided a high-fidelity, three-dimensional topographic image of the fenestral surface directly from a fixed and dried bulk adrenal specimen coated with a 1 nm chromium film. First described from TEM replicas, the “flower-like” structure comprising the fenestral pores was readily visualized by HRSEM. High-resolution images contained particulate ectodomains on the lumenal surface of the endothelial cell membrane. Particles arranged in a rough octagonal shape formed the fenestral rim. Digital acquisition of analog photographic recordings revealed a filamentous meshwork in the diaphragm, thus confirming and extending observations from replica and grazing section TEM preparations. Endothelial cell pockets, first described in murine renal peritubular capillaries, were observed in rhesus and rabbit adrenocortical capillaries. This report features recent observations of fenestral diaphragms and endothelial pockets fitted with multiple diaphragms utilizing a Schottky field-emission electron microscope. In-lens staging of bulk and thin section specimens allowed tandem imaging in HRSEM and scanning TEM modes at 25 kV.  相似文献   

2.
Scanning (SEM) and transmission electron microscopy (TEM) are two fundamental microscopic techniques widely applied in biological research for the study of ultrastructural cell components. With these methods, especially TEM, it is possible to detect and quantify the morphological and ultrastructural parameters of intracellular organelles (mitochondria, Golgi apparatus, lysosomes, peroxisomes, endosomes, endoplasmic reticulum, cytoskeleton, nucleus, etc.) in normal and pathological conditions. The study of intracellular vesicle compartmentalization is raising even more interest in the light of the importance of intracellular localization of mediators of the signaling in eliciting different biological responses. The study of the morphology of some intracellular organelles can supply information on the bio‐energetic status of the cells. TEM has also a pivotal role in the determination of different types of programmed cell death. In fact, the visualization of autophagosomes and autophagolysosomes is essential to determine the occurrence of autophagy (and also to discriminate micro‐autophagy from macro‐autophagy), while the presence of fragmented nuclei and surface blebbing is characteristic of apoptosis. SEM is particularly useful for the study of the morphological features of the cells and, therefore, can shed light, for instance, on cell–cell interactions. After a brief introduction on the basic principles of the main electron microscopy methods, the article describes some cell components with the aim to demonstrate the huge role of the ultrastructural analysis played in the knowledge of the relationship between function and structure of the biological objects. Microsc. Res. Tech., 76:1057–1069, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The fine structure of submandibular glands of mouse were analyzed using light microscopy (LM), high resolution scanning electron microscopy (HRSEM), and transmission electron microscopy (TEM) methods. For LM, the specimens were embedded in Spurr resin, stained by toluidin blue solutions. For TEM, the tissues of submandibular salivary glands were fixed with modified Karnovsky solution and postfixed with osmium tetroxide. For HRSEM, the tissues were fixed with 2% osmium tetroxide solution in 1/15M sodium phosphate buffer (pH 7.4). The samples were immersed successively in dymethylsulphoxide and freeze cracked. The maceration was made in diluted osmium tetroxide for 24-48 h. The samples were examined by high resolution scanning electron microscopy. The intracellular components of acinar and ductal cells revealed clearly the Golgi apparatus, rough endoplasmic reticulum, secretory granules, and mitochondria. The end bulbs of Golgi lamellae and flattened cisterns of rough endoplasmic reticulum showed the luminal surface. A few mitochondria were identified intermingling between the rough endoplasmic reticulum and the mitochondriales cristae in three-dimensional HRSEM images. Secretory granules were numerous and presented different sizes. Small granules of ribosomes were attached on cistern surface, measuring 20-25 nm in diameter. Numerous arranged microvilli were found on the luminal surface of secretory canaliculus. The contact surfaces of acinar cells revealed complicated interdigitations by cytoplasmic processes. The mitochondria of duct cells were disposed vertically and surrounded by basal infoldings of plasma membranes. Basement membrane showed a spongy-like structure having an irregular surface with various strands and meshes of fine collagen fibrils.  相似文献   

4.
Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.  相似文献   

5.
The present study correlates the ultrastructural morphology of junctional complexes as revealed by transmission electron microscopy (TEM) with that observed by high-resolution scanning electron microscopy (HRSEM), thanks to a new modification of the osmium tetroxide maceration technique. The removal of all cytoplasmic organelles by this technique allows the inspection of the inner side of the plasmalemma. With this treatment, a continuous band of tightly packed particles is observed at the most apical portion of lateral membranes. Just below this band, irregular clusters of apparently identical particles are placed all around the cellular contour. The topographical correspondence among these clusters and spot desmosomes seen by TEM identifies them as desmosomes. The continuous band seems to represent the combination of both zonulae, occludens and adherens. Regarding the nature of the particles, we suppose that they probably consist of peripheral membrane proteins clustered at the cytoplasmic surface of intercellular junctions and involved in the linkage between cytoskeleton and plasmalemma.  相似文献   

6.
Detailed examination of subcellular structures in three dimensions (3D) by high resolution scanning electron microscopy (HRSEM) is now possible due to improvements in the design of the scanning electron microscope and the introduction of methods of specimen preparation using chemical removal of the cytosol and cytoskeleton by dilute osmium tetroxide. Cells which have been fixed, frozen, cleaved, thawed, and subjected to cytosol extraction display intact intracellular structures in 3D including nuclear chromatin, endoplasmic reticulum, mitochondria, and the Golgi complex at a resolution close to that of conventional biological transmission electron microscopy (TEM). Small changes in the 3D structure of subcellular components can be conveniently examined in this way in development, in a variety of physiological processes and in disease. Broad areas of the specimen can be quickly surveyed by HRSEM since sectioning is not required and specimens of comparatively large size (up to 5 mm3) can be placed in the microscope. Extraction of the cytosol with dilute osmium tetroxide (OsO4) exposes subcellular structures in relief, permitting their examination in 3D from several aspects. However, the OsO4 extraction technique is limited, since significant intracellular structures, such as the cytoskeleton, vesicles, and antibody binding sites can be removed or inactivated during the cytosol removal steps.  相似文献   

7.
Collagen nanofibers were generated at ambient temperature and pressure by electrospinning a 1 wt% solution of type I collagen and polyethylene oxide. Products were imaged with high-resolution scanning electron microscopy (HRSEM) at medium (approximately 30,000 x) and high magnifications (approximately 100,000 x) and with transmission electron microscopy (TEM). The capacity to produce collagen nanofibers may lead to the generation of extracellular matrix-based fabrics with applications in the fields of wound healing and tissue engineering.  相似文献   

8.
The nerve terminals of intrinsic muscular fibers of the tongue of adult wistar rats was studied by using silver impregnation techniques, transmission electron microscopy (TEM), and high resolution scanning electron microscopy (HRSEM) to observe the nerve fibers and their terminals. Silver impregnation was done according to Winkelman and Schmit, 1957 . For TEM, small blocks were fixed in modified Karnovsky solution, postfixed in 1% buffered osmium tetroxide solution, and embedded in Spurr resin. For HRSEM, the parts were fixed in 2% osmium tetroxide solution with 1/15 M sodium phosphate buffer (pH 7.4) at 4°C for 2 h, according to the technique described by Tanaka, 1989 . Thick myelinated nerve bundles were histologically observed among the muscular fibers. The intrafusal nerve fiber presented a tortuous pathway with punctiform terminal axons in clusters contacting the surface of sarcolemma. Several myelinated nerve fibers involved by collagen fibers of the endoneurium were observed in HRSEM in three-dimensional aspects. The concentric lamellae of the myelin sheath and the axoplasm containing neurofilaments interspersed among the mitochondria were also noted. In TEM, myofibrils, mitochondria, rough endoplasmic reticulum, Golgi's apparatus, and glycogen granules were observed in sarcoplasm. It is also noted that the sarcomeres constituted by myofilaments with their A, I, and H bands and the electron dense Z lines. In areas adjacent to muscular fibers, there were myelinated and unmyelinated nerve fibers involved by endoneurium and perineurium. In the region of the neuromuscular junction, the contact with the sarcolemma of the muscular cell occurs forming several terminal buttons and showing numerous evaginations of the cell membrane. In the terminal button, mitochondria and numerous synaptic vesicles were observed. Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc.  相似文献   

9.
We report the use of a focused ion beam/scanning electron microscope (FIB/SEM) for simultaneous investigation of digestive gland epithelium gross morphology and ultrastructure of multilamellar intracellular structures. Digestive glands of a terrestrial isopod (Porcellio scaber, Isopoda, Crustacea) were examined by FIB/SEM and by transmission electron microscopy (TEM). The results obtained by FIB/SEM and by TEM are comparable and complementary. The FIB/SEM shows the same ultrastructural complexity of multilamellar intracellular structures as indicated by TEM. The term lamellar bodies was used for the multillamellar structures in the digestive glands of P. scaber due to their structural similarity to the lamellar bodies found in vertebrate lungs. Lamellar bodies in digestive glands of different animals vary in their abundance, and number as well as the thickness of concentric lamellae per lamellar body. FIB/SEM revealed a connection between digestive gland gross morphological features and the structure of lamellar bodies. Serial slicing and imaging of cells enables easy identification of the contact between a lamellar body and a lipid droplet. There are frequent reports of multilamellar intracellular structures in different vertebrate as well as invertebrate cells, but laminated cellular structures are still poorly known. The FIB/SEM can significantly contribute to the structural knowledge and is always recommended when a link between gross morphology and ultrastructure is investigated, especially when cells or cellular inclusions have a dynamic nature due to normal, stressed or pathological conditions.  相似文献   

10.
The palatine mucosa and filiform papillae of the dorsal tongue mucosae of rodents were examined using transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HRSEM). In the HRSEM method, the samples were fixed in 2% osmium tetroxide, dehydrated in alcohol, critical point‐dried, and coated with gold‐palladium. In addition, the HRSEM technique was used for morphometric analysis (length, width, and length/width ratio of cocci and bacilli). For the TEM method, the tissues were fixed in modified Karnovsky solution (2.5% glutaraldehyde, 2% formalin in 0.1M sodium phosphate buffer, pH 7.4) and embedded in Spurr resin. The results demonstrated that there are thick polygonal keratinized epithelial cells where groups of bacteria are revealed in three‐dimensional images on the surface of filiform papillae in these animals. The bacterial membranes are randomly attached to the microplicae surface of epithelial cells. Morphometrics showed higher values of length and width of cocci in newborn (0 day) as compared to newborn (7 days) and adults animals, the bacilli showed no differences in these measurements. At high magnification, the TEM images revealed the presence of glycocalyx microfilaments that constitute a fine adhesion area between bacterial membranes and the membranes of epithelial microplicae cells. In conclusion, the present data revealed the fine fibrillar structures of bacteria that facilitate adhesion to the epithelial cell membranes of the oral cavity and morphometric changes in newborn (0 day) rats as compared with other periods. Microsc. Res. Tech. 76:1226–1233, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Improvements in the design of modern scanning electron microscopes (SEM) and new methods of specimen preparation incorporating chemical removal of the cytosol and cytoskeleton, now make it possible to view cells and their organelles in three dimensions (3D) at high magnification. In this experiment, high resolution SEM (HRSEM) utilizing new methods of tissue preparation was used to study the intracellular structures of the mouse ileum. In addition, in vivo intestinal perfusion was used to further enhance cellular preservation. Using these modifications it was possible to visualize, in 3D, the fine structure of intestinal epithelial cells and intracellular organelles such as the nucleus, mitochondria, endoplasmic reticulum, and Golgi complex, as well as microvilli and cell membrane. Whole mitochondria appeared as irregularly shaped organelles which contained tubular cristae. Plate-like cristae were not observed. The brush border was found to be a closely packed array of cylindrical projections. The extensive folding and structural intricacy of lateral cell membranes between absorptive cells could only be appreciated by viewing this tissue with 3D HRSEM. The use of HRSEM to study 3D ultrastructure of cells and their organelles will improve our understanding of the structure-function relationships in both the healthy and diseased gastrointestinal tract.  相似文献   

12.
Cryopreservation of mammalian embryos is an important tool for the application of reproductive biotechnologies. Subjective evaluation to determine embryo viability is often used. The determination of the best cryopreservation protocol depends on morphological and molecular analysis of cellular injuries. The main objective of this study was to compare two methods of cryopreservation by assessing morphological alterations of frozen embryos using light, fluorescence, and transmission electron microscope. Fresh (control), slow frozen, and vitrified mouse embryos were composed. To evaluate the viability of the embryos, the cell membrane integrity was assessed using Hoechst33342 and propidium iodide (H/PI) staining. Morphological analyses using hematoxylin and eosin (HE) staining were performed to test different techniques (in situ, paraffin, and historesin) by both light and fluorescence microscopy. Transmission electron microscope was used to detect ultrastructural alterations in Spurr- and Araldite-embedded samples. H/PI staining detected more membrane permeability in the vitrification (69.8%) than in the slow freezing (48.4%) or control (13.8%) groups (P < 0.001). Historesin-embedded samples showed to be more suitable for morphological analyses because cellular structures were better identified. Nuclear evaluation in historesin sections showed the induction of pycnosis in slow freezing and vitrification groups. Cytoplasm evaluation revealed a condensation and an increase in eosinophilic intensity (indicating apoptosis) in the slow freezing group, and weakly eosinophilic structures and degenerated cells (indicating oncosis) in the vitrification group (P < 0.05). Ultrastructural analyses confirmed HE morphological findings. It was concluded that both cryopreservation techniques resulted in oncosis and apoptosis injuries. However, vitrification caused more severe cellular alterations and reduced embryonic viability compared to slow freezing.  相似文献   

13.
Piezoelectric nanoactuation, which is rapidly becoming established as state-of-the-art positioning control in transmission electron microscopy (TEM), is extended here to include a rotational degree of freedom. A piezoelectric goniometer with both translational and rotary drive action has been designed with high level of miniaturization to fit into a standard TEM specimen holder shaft without compromising any of the performance of the default TEM goniometer and without any modifications to the TEM. Enhanced functionality of such a goniometer-in-goniometer is outlined and experimental results for electron tomography of nanostructures over a full tilt range of views, without any missing angles, are demonstrated.  相似文献   

14.
Acrylic fibres are synthetic fibres produced by extruding viscous solutions of acrylonitrile co-polymers. A spin finish is applied during the fibre-forming process. In this work the structure of acrylic fibres has been correlated with spin finish distribution by a combined application of transmission electron microscopy (TEM), electron spectroscopic imaging (ESI) and X-ray microanalysis (XRMA). Many irregularly shaped microcavities at the periphery of the fibres were detected by TEM. XRMA revealed that potassium and phosphorus are the elements most often found inside the spin finish material. ESI revealed that phosphorus is constantly present in all the microcavities. Therefore it seems likely that a preferential distribution of the spin finish is found inside the microcavities, just at the periphery of the fibre. This work is also an example of how both ESI and XRMA are powerful tools in morphological studies.  相似文献   

15.
Drug‐resistant tuberculosis is being increasingly recognized and is one among the leading cause of death worldwide. Remarkable impermeability of cell wall to antituberculous drugs protects the mycobacteria from drug action. The present study analyzed the cell wall thickness among first‐line drug resistant and sensitive Mycobacterium tuberculosis (Mtb) isolated from cerebrospinal fluid by transmission electron microscopy (TEM). The average thickness of the cell wall of sensitive isolates was 13.60 ± 0.98 nm. The maximum difference (26.48%) in the cell wall thickness was seen among multi‐drug resistant (18.50 ± 1.71 nm) isolates and the least difference (4.14%) was shown by streptomycin‐resistant (14.18 ± 1.38 nm) isolates. The ultrastructural study showed evident differences in the cell wall thickness among sensitive and resistant isolates. Preliminary TEM examination of cells indicates that morphological changes occur in the cell wall which might be attributed to the drug resistance. The thickened wall of Mtb appears to help the bacilli to overcome the action of antituberculous drugs.  相似文献   

16.
Transmission electron microscopy (TEM) is the main tool for exploring the intracellular damage and organelle distribution. The cause of producing embryo cytoplsamic fragmentation is not completely understood. Since the fragments have detrimental effects on embryo development, the ultrastructural analysis of fragments may play an important role in fragmentation etiology and in embryo development as well. There are no studies regarding the ultrastructure of fragments in transferable embryos, because the preparation for TEM is not vital and embryos are discarded inevitably. This study aims to introduce a new method for ultrastructural evaluation of fragments without damaging the human cleaving embryos. Microsc. Res. Tech. 79:459–462, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
In this study, we examine new cytochemical aspects of the fimbria-mediated adhesion of the oral facultative pathogen Candida albicans. A wild-type strain of the yeast was grown with and without sucrose supplementation for 8 days. Osmium tetroxide, uranyl acetate (UA), ruthenium red (RR), and cupromeronic blue (CB) staining with critical electrolytic concentrations (CECs) and tannic acid-metal salt technique (TAMST) were applied to specimens separately or in combination for transmission electron microscopy (TEM) examination. Cytochemically, two types of fimbriae of C. albicans were distinguished: RR-positive fimbriae of polyanionic glycoconjugates and CB-positive fimbriae with a ceasing point of 0.3 M MgCl2 where no staining of sulfated carboxyl-rich and/or phospho-glycoconjugates occurred. Additionally, CB-positive intercellular fibers were observed, which seemed to be involved in intercellular adhesion. The present protocol enables, for the first time, a partial cytochemical differentiation between at least two kinds of yeast fimbriae.  相似文献   

18.
Cellular and subcellular organization and distribution of actin filaments have been studied with various techniques. The use of fluorescence photo-oxidation combined with phalloidin conjugates with eosin has allowed the examination of the precise cellular and subcellular location of F-actin. Correlative fluorescence light microscopy and transmission electron microscopy studies of F-actin distribution are facilitated with this method for morphological and physiological studies. Because phalloidin-eosin is smaller than other markers, this method allows the analysis of the three-dimensional location of F-actin with high-resolution light microscopy, three-d serial sections reconstructions, and electron tomography. The combination of selective staining and three-dimensional reconstructions provide a valuable tool for revealing aspects of the synaptic morphology that are not available when conventional electron microscopy is used. By applying this selective staining technique and three-dimensional imaging, we uncovered the structural organization of actin in the postsynaptic densities in physiological and pathological conditions.  相似文献   

19.
Urso M  Cosmas A  Singh MF  Manfredi T 《Scanning》2005,27(4):208-212
Age-associated muscle wasting, or sarcopenia, can be delayed or reversed with interventions, including exercise and pharmaceutical agents. Mapping morphometric changes in the skeletal muscle insulin growth factor 1 receptor can provide valuable information regarding mechanisms controlling muscle protein metabolism. Immunocolloidal gold labeling is a powerful immunocytochemistry procedure for detecting antigens at the ultrastructural level, providing plausible biological markers of cell and tissue adaptations to stimuli. The intent here was to employ immunogold labeling to identify, localize, and quantify the insulin growth factor receptor-I (IGF-IR) in elderly human skeletal muscle. Needle biopsy specimens of the leg vastus lateralis muscle were fixed with 1% glutaraldehyde and 4% paraformaldehyde, dehydrated, and embedded in LR white resin. Pilot experiments were carried out to establish optimal dilutions of primary and secondary antibodies and to employ controls to establish staining specificity. The 6 nm gold particles were first evident when viewed at transmission electron microscopy (TEM) magnifications at 54,000x and clearest at 71,000x. Consistencies were noted in the staining patterns, with the majority of particles lying in proximity to the myofilaments. Gold particles were also found randomly along the outer membrane of the sarcolemma and the mitochondrial membranes. National Institutes of Health (NIH) Image 1.55 version software was used to measure receptor density (NIH, Bethesda, Md., USA). It appears that immunogold labeling of postembedded tissue samples is a sensitive method for detecting IGF-I receptors at the ultrastructural level.  相似文献   

20.
Observation of sperm development and determination of their morphological characteristics are very important to the understanding of phylogenetic relationships and the study of sperm function during fertilization. Although ultrastructural studies of sperm development in the testes of the fruit fly Drosophila have been performed, there are few reports describing electron microscopic morphology of mature sperm, that is, those released from the testes to the seminal vesicles. Here, we present the first report of the sagittal organization of Drosophila sperm head and neck regions by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The head and tail structures of a mature sperm, for example, the acrosome, nucleus, and flagellum, were easy to distinguish by the morphological characteristics of the sperm surface by SEM. The morphological relationships between the surface and internal structures of mature sperm were confirmed by observing longitudinal sections with TEM. Our approach overcame the technical difficulties involved in sample preparation for electron microscopic observation of the Drosophila mature sperm head, and therefore, this study serves as an important foundation for future genetic dissection of sperm ultrastructure and function in male sterile mutants. Microsc. Res. Tech. 77:661–666, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号