共查询到18条相似文献,搜索用时 93 毫秒
1.
受侧风影响,高速行驶的车辆易偏离预定行驶轨迹,增加驾驶员“误操作”的风险,存在较大安全隐患,为此,该文开展了车辆侧风稳定性主动控制研究。该研究通过建立附加气动力作用的三自由度整车动力学模型,设计主动前轮转向的车辆侧风稳定性模型预测控制器,并搭建 Simulink-CarSim 联合仿真平台进行验证分析。结果表明,在单向侧风工况和交变侧风工况下,带侧风稳定控制的车辆最大侧向偏移量为 0.01 m,远低于无控制时的偏移量;横摆角速度平台值保持在“0”左右,横摆角速度峰值最高降低了 80%,极大地提高了车辆的侧风稳定性。 相似文献
2.
控制系统中存在的不确定性为其性能优化带来诸多问题.自适应控制和鲁棒控制是针对系统存在的不确定性而采取的不同设计策略;前者没有充分考虑系统的未建模动态,而后者往往是针对不确定的最大界而设计,具有较强的保守性.本文试图将自适应控制和鲁棒控制的策略相结合,提出了一种在模型预测控制中利用未来不确定信息的对偶自适应模型预测控制策略.该策略将系统中由未建模动态引起的不确定性参数化表达,并为其设定边界约束,作为优化问题中新的约束,在优化控制目标的同时减小系统不确定性对控制的影响.仿真结果表明,本文提出的算法较传统自适应模型预测控制算法,对于系统存在的不确定性由于在迭代过程中采用参数化描述,得到了更好的系统性能,且具有更好的收敛性. 相似文献
3.
为了提升不同运行工况下的路面状态识别精度及主动悬架平顺性控制性能,提出一种基于ResNeSt网络路面状态识别的主动悬架模型预测控制(MPC)方法.首先,搭建基于多路径分散注意力思想的ResNeSt网络架构,建立面向主动悬架实时控制的路面状态识别算法,采用交叉熵目标损失函数和AdamW梯度下降算法进行网络训练以及测试实验验证;然后,在此基础上设计基于路面状态识别的主动悬架MPC控制算法,根据离散状态空间方程推导悬架系统预测模型,以悬架预测输出和控制力输入为性能指标建立目标函数,并考虑不同路面的控制策略确定加权矩阵取值,在系统约束条件下,将MPC目标函数转化为二次最优规划问题的求解;最后,将所提出控制算法与被动悬架、LQG控制进行对比仿真分析,结果表明:ResNeSt网络可以快速准确地识别多种路面状态,所提出控制算法能够根据路面状态对悬架进行实时瞬态主动控制,簧载质量加速度、悬架动挠度和轮胎动载荷的均方根值平均值相比LQG控制分别降低36.56%、32.99%和36.28%. 相似文献
4.
5.
6.
7.
8.
基于串联结构的分布式模型预测控制 总被引:2,自引:0,他引:2
分布式模型预测控制(Distributed model predictive control, DMPC)是一类用于多输入多输出的大规模系统的控制方式.每个智能体通过相互协作完成整个系统的控制. 已有的分布式预测控制算法可以划分为迭代式算法和非迭代算法:迭代算法在迭代到收敛情况下,具有集中式预测控制(Centralized model predictive control, CMPC)算法的性能,但迭 代次数过多,子系统间通信量大;非迭代算法不需要迭代,但性能有一定损失.本文提出了一种基于串联结构的非迭代分布式预测控 制算法.本文算法在串联结构系统中可以有效减少计算量,并结合氧化铝碳分解(Alumina continuous carbonation decomposition process, ACCDP)这一串联过程,通过仿真验证了算 法的有效性;同时分析了算法运用在串联结构下的性能并证明了其稳定性. 相似文献
9.
针对注射过程具有重复运行和非线性的特性,在对预测控制与迭代学习控制进行综合应用并加以改进的基础上,给出一种模型预测迭代学习复合控制新算法,研究了控制器的设计方案.同时,将迭代学习思想引入到预测步长的在线调整,提出了预测步长的迭代学习方法.仿真结果表明,该方法是有效的,其控制性能优于PID迭代学习控制系统. 相似文献
10.
针对注射过程具有重复运行和非线性的特性,在对预测控制与迭代学习控制进行综合应用并加以改进的基础上,给出一种模型预测迭代学习复合控制新算法,研究了控制器的设计方案。同时,将迭代学习思想引入到预测步长的在线调整,提出了预测步长的迭代学习方法。仿真结果表明,该方法是有效的,其控制性能优于PID送代学习控制系统。 相似文献
11.
为了提高迭代学习控制方法在间歇过程轨迹跟踪问题中的收敛速度,本文将批次间的比例型迭代学习控制与批次内的模型预测控制相结合,提出了一种综合应用方法.首先根据间歇过程的线性模型,预测出比例型迭代学习控制的系统输出,然后在批次内采用模型预测控制,通过极小化一个二次型目标函数来获得控制增量.该方法可使系统输出跟踪期望轨迹的速度比比例型迭代学习控制方法更快些.最后通过仿真实例验证了该方法的有效性. 相似文献
12.
A latent variable iterative learning model predictive control (LV-ILMPC) method is presented for trajectory tracking in batch processes. Different from the iterative learning model predictive control (ILMPC) model built from the original variable space, LV-ILMPC develops a latent variable model based on dynamic partial least squares (DyPLS) to capture the dominant features of each batch. In each latent variable space, we use a state–space model to describe the dynamic characteristics of the internal model, and an LV-ILMPC controller is designed. Each LV-ILMPC controller tracks the set points of the current batch projection in the corresponding latent variable space, and the optimal control law is determined and the persistent process disturbances is rejected along both time and batch horizons. The proposed LV-ILMPC formulation is based on general LV-MPC and incorporates an iterative learning function into LV-MPC. In addition, the real physical input that drives the process can be reconstructed from the latent variable space. Therefore, this algorithm is particularly suitable for multiple-input, multiple-output (MIMO) systems with strong coupling and serious collinearity. Three studies are used to illustrate the effectiveness of the proposed LV-ILMPC . 相似文献
13.
A dual closed‐loop tracking control is proposed for a wheeled mobile robot based on active disturbance rejection control (ADRC) and model predictive control (MPC). In the inner loop system, the ADRC scheme with an extended state observer (ESO) is proposed to estimate and compensate external disturbances. In the outer loop system, the MPC strategy is developed to generate a desired velocity for the inner loop dynamic system subject to a diamond‐shaped input constraint. Both effectiveness and stability analysis are given for the ESO and the dual closed‐loop system, respectively. Simulation results demonstrate the performances of the proposed control scheme. 相似文献
14.
Multi-phase batch process is common in industry, such as injection molding process, fermentation and sequencing batch reactor; however, it is still an open problem to control and analyze this kind of processes. Motivated by injection molding processes, the multi-phase batch process in each cycle is formulated as a switched system with internally forced switching instant. Controlling multi-phase batch processes can be decomposed into two subtasks: detecting the dynamics-switching-time; designing the control law for each phase with considering switching effect. In this paper, it is assumed that the dynamics-switching-time can be obtained in real-time and only the second subtask is studied. To exploit the repetitive nature of batch processes, iterative learning control scheme is used in batch direction. To deal with constraints, updating law is designed by using model predictive control scheme. An online iterative learning model predictive control (ILMPC) law is first proposed with a quadratic programming problem to be solved online. To reduce computation burden, an offline ILMPC is also proposed and compared. Applications on injection molding processes show that the proposed algorithms can control multi-phase batch processes well. 相似文献
15.
针对快速路交通系统复杂时变以及难以建模的特点,首先,本文设计了基于无模型自适应预测控制的快速路入口匝道控制方案.其次,根据快速路交通系统具有重复性特点,本文在无模型自适应预测控制方法的基础上引入开环迭代学习控制,提出一种带有迭代学习前馈外环的无模型自适应入口匝道预测控制方案.相比无模型自适应预测控制方案,该方案可以利用迭代学习前馈控制器补偿系统可重复扰动,实现系统的完全跟踪.值得说明的是,预测控制器和学习控制器可以独立工作也可以联合工作.最后,文章给出了控制方案的收敛性分析,并通过交通流仿真验证了所提控制方案的有效性. 相似文献
16.
由于工业实践的需要,非线性预测控制近年来受到广泛地关注.Volterra模型是一类特殊的非线性模型,非常适合描述工业过程中的无记忆非线性对象.传统的基于Volterra模型的控制器合成法及迭代计算预测控制器法计算量大,且不便于处理控制约束.非线性模型预测控制求解是典型的非线性规划问题,序列二次规划(sequential quadratic program,SQP)算法是求解非线性规划问题常用方法之一.针对Volterra非线性模型预测控制求解问题,本文将滤子法与一种信赖域SQP算法相结合,提出一种改进SQP算法用于基于非线性Volterra模型的带控制约束的多步预测控制求解,并分析了所提方法的收敛性.工业实例仿真结果证实了所提方法的可行性与有效性. 相似文献
17.