首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the numerical modelling of cracks in the dynamic case using the extended finite element method. More precisely, we are interested in explicit algorithms. We prove that by using a specific lumping technique, the critical time step is exactly the same as if no crack were present. This somewhat improves a previous result for which the critical time step was reduced by a factor of square root of 2 from the case with no crack. The new lumping technique is obtained by using a lumping strategy initially developed to handle elements containing voids. To be precise, the results obtained are valid only when the crack is modelled by the Heaviside enrichment. Note also that the resulting lumped matrix is block diagonal (blocks of size 2 × 2). For constant strain elements (linear simplex elements) the critical time step is not modified when the element is cut. Thanks to the lumped mass matrix, the critical time step never tends to zero. Moreover, the lumping techniques conserve kinetic energy for rigid motions. In addition, tensile stress waves do not propagate through the discontinuity. Hence, the lumping techniques create neither error on kinetic energy conservation for rigid motions nor wave propagation through the crack. Both these techniques will be used in a numerical experiment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
    
We deal with the numerical solution of the system of conservation laws. Although this approach has been proposed for a simulation of inviscid compressible flow, it can be straightforwardly applied to more general problems. We carried out the space semi‐discretization by the discontinuous Galerkin finite element (DGFE) method, which is based on a piecewise polynomial discontinuous approximation. The resulting system of ordinary differential equations is discretized by the backward difference formula (BDF). A suitable linearization of the physical fluxes leads to a scheme that is practically unconditionally stable and has a higher order of accuracy with respect to the space and time coordinates and we solve a linear algebraic system at each time level. Moreover, we develop an adaptive technique for a choice of the length of the time step that is based on the use of two BDFs of the same order of accuracy. We call the resulting scheme the ABDF–DGFE (adaptive BDF–DGFE) method. Finally, the efficiency of the presented adaptive strategy is documented by a set of numerical examples. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
We discuss special features of the fracture front propagation in structural components (variable-thickness disks and plates, internally pressurized thick-walled vessels). The upper and lower bounds of the relative time of the front propagation have been estimated. Some recommendations regarding the application of the results obtained are provided. __________ Translated from Problemy Prochnosti, No. 6, pp. 13–24, November–December, 2007.  相似文献   

4.
Shells of revolution subject to axisymmetric loads often fail by non-symmetric bifurcation buckling after non-linear axisymmetric deformations. A number of computer programmes have been developed in the past decades for these problems, but none of them is capable of bifurcation analysis on the descending branch of the primary load–deflection path following axisymmetric collapse/snap-through. This paper presents the first finite element formulation of post-collapse bifurcation analysis of axisymmetric shells in which a modified arc-length method, the accumulated arc-length method, is developed to effect a new automatic bifurcation solution procedure. Numerical examples are presented to demonstrate the validity and capability of the formulation as well as the practical importance of post-collapse bifurcation analysis. The accumulated arc-length method proposed here can also be applied to the post-collapse bifurcation analysis of other structural forms. © 1997 by John Wiley & Sons, Ltd.  相似文献   

5.
    
Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack‐tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub‐triangle of the cracked element. With the extra enrichments, the crack‐tip element becomes capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3‐node constant strain triangle (CST) and a standard algorithm was used to solve the non‐linear equations. The performance of the element is illustrated by modelling fracture mechanical benchmark tests. Investigations were carried out on the performance of the element for different crack lengths within one element. The results are compared with previously obtained XFEM results applying fully cracked XFEM elements, with computational results achieved using standard cohesive interface elements in a commercial code, and with experimental results. The suggested element performed well in the tests. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
    
Adaptive time step methods provide a computationally efficient means of simulating transient problems with a high degree of numerical accuracy. However, choosing appropriate time steps to model the transient characteristics of solidification processes is difficult. The Gresho–Lee–Sani predictor–corrector strategy, one of the most commonly applied adaptive time step methods, fails to accurately model the latent heat release associated with phase change due to its exaggerated time steps while the apparent heat capacity method is applied. Accordingly, the current study develops a modified local time truncation error‐based strategy designed to adaptively adjust the size of the time step during the simulated solidification procedure in such a way that the effects of latent heat release are more accurately modeled and the precision of the computational solutions correspondingly improved. The computational accuracy and efficiency of the proposed method are demonstrated via the simulation of several one‐dimensional and two‐dimensional thermal problems characterized by different phase change phenomena and boundary conditions. The feasibility of the proposed method for the modeling of solidification processes is further verified via its applications to the enthalpy method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Two-dimensional numerical models using the displacement discontinuity method and the PATH algorithm show that shear fractures can propagate in three different patterns, depending on the lateral normal stress (LNS). Under 0 or very small LNS they propagate by open wing cracks, as shown in many previous results. Under increasing LNS, the extension consists first of a short wing crack followed by a succession of small closed and open segments forming a stair-step pattern. As the LNS increases, the length of the closed segments increases, thus changing the general orientation of the extension. Under sufficiently high LNS the transition is complete, and propagation takes place as a closed shear fracture. These results provide a remarkable confirmation of the theoretical predictions made by Cherepanov [J. Appl. Math. Mech. (English transl. of Prikl. Mate. Mekh.) 30 (1966) 96]. They also explain the difference between the fracture parameters in tension and in shear.  相似文献   

8.
    
The present paper shows the applicability of the dual boundary element method to analyse plastic, viscoplastic and creep behaviours in fracture mechanics problems. Several models with a crack, including a square plate, a holed plate and a notched plate, are analysed. Special attention is taken when the discretization of the domain is performed. In fact, for the plasticity and viscoplasticity cases, only the region susceptible to yielding was discretized, whereas the creep case required the discretization of the whole domain. The proposed formulation is presented as an alternative technique to study these kinds of nonlinear problems. Results from the present formulation are compared to those of the well‐established finite element technique, and they are in good agreement. Important fracture mechanic parameters like KI, KII, J‐integrals and C‐integrals are also included. In general, the results, for the plastic, viscoplastic and creep cases, exhibit that the highest stress concentrations are in the vicinity of the crack tip and they decrease as the distance from the crack tip is increased.  相似文献   

9.
    
The numerical analysis of the dynamic evolution problem concerning an elastic–plastic saturated porous media in the presence of softening (or non‐associativity) is considered in the framework of the Biot formulation extended to take into account plastic phenomena. The finite step boundary value problem, obtained by discretization in time of the continuous initial boundary value problem, is studied and the issue of its ill‐posedness is particularly addressed. The conditions for the loss of ellipticity are established for the linearized problem solved at each iteration when using the Newton–Raphson scheme. In particular, the roles of the algorithmic properties on this loss of ellipticity are derived in detail. The integration scheme of the balance of mass equation plays a major role and it is shown that the fluid flow (Darcy's law) does indeed introduce a length scale but in addition to being dependent on the integration time step, it is found to be insufficient for regularization. To illustrate and corroborate the obtained results, a one‐dimensional example (exhibiting all the features of the three‐dimensional situation) is considered and the corresponding linearized finite step problem is solved in closed form. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
    
A method for coarse graining of microcrack growth to the macroscale through the multiscale aggregating discontinuity (MAD) method is further developed. Three new features are: (1) methods for treating nucleating cracks, (2) the linking of the micro unit cell with the macroelement by the hourglass mode, and (3) methods for recovering macrocracks with variable crack opening. Unlike in the original MAD method, ellipticity is not retained at the macroscale in the bulk material, but we show that the element stiffness of the bulk material is positive definite. Several examples with comparisons with direct numerical simulations are given to demonstrate the effectiveness of the method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
    
New methods for the analysis of failure by multiscale methods that invoke unit cells to obtain the subscale response are described. These methods, called multiscale aggregating discontinuities, are based on the concept of ‘perforated’ unit cells, which exclude subdomains that are unstable, i.e. exhibit loss of material stability. Using this concept, it is possible to compute an equivalent discontinuity at the coarser scale, including both the direction of the discontinuity and the magnitude of the jump. These variables are then passed to the coarse‐scale model along with the stress in the unit cell. The discontinuity is injected at the coarser scale by the extended finite element method. Analysis of the procedure shows that the method is consistent in power and yields a bulk stress–strain response that is stable. Applications of this procedure to crack growth in heterogeneous materials are given. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for fully-automatic modelling of cohesive crack growth in quasi-brittle materials. The simple linear elastic fracture mechanics (LEFM)-based remeshing procedure developed previously is augmented by inserting nonlinear interface finite elements automatically. The constitutive law of these elements is modelled by the cohesive/fictitious crack model to simulate the fracture process zone, while the elastic bulk material is modelled by the SBFEM. The resultant nonlinear equation system is solved by a local arc-length controlled solver. The crack is assumed to grow when the mode-I stress intensity factor KI vanishes in the direction determined by LEFM criteria. Other salient algorithms associated with the SBFEM, such as mapping state variables after remeshing and calculating KI using a “shadow subdomain”, are also described. Two concrete beams subjected to mode-I and mixed-mode fracture respectively are modelled to validate the new method. The results show that this SBFEM-FEM coupled method is capable of fully-automatically predicting both satisfactory crack trajectories and accurate load-displacement relations with a small number of degrees of freedom, even for problems with strong snap-back. Parametric studies were carried out on the crack incremental length, the concrete tensile strength, and the mode-I and mode-II fracture energies. It is found that the KI ? 0 criterion is objective with respect to the crack incremental length.  相似文献   

13.
This paper presents a finite element (FE) model for fully automatic simulation of multiple discrete crack propagation in reinforced concrete (RC) beams. The discrete cracks are modelled based on the cohesive/fictitious crack concept using nonlinear interface elements with a bilinear tensile softening constitutive law. The model comprises an energy-based crack propagation criterion, a simple remeshing procedure to accommodate crack propagations, two state variable mapping methods to transfer structural responses from one FE mesh to another, and a local arc-length algorithm to solve system equations characterised by material softening. The bond-slip behaviour between reinforcing bars and surrounding concrete is modelled by a tension-softening element. An example RC beam with well-documented test data is simulated. The model is found capable of automatically modelling multiple crack propagation. The predicted cracking process and distributed crack pattern are in close agreement with experimental observations. The load-deflection relations are accurately predicted up to a point when compressive cracking becomes dominant. The effects of bond-slip modelling and the efficiency and effectiveness of the numerical algorithms, together with the limitations of the current model, are also discussed.  相似文献   

14.
Ductile fracture is often considered as the consequences of the accumulation of plastic damage. This paper is concerned with the application of a recently developed damage plasticity theory incorporates the pressure sensitivity and the Lode angle dependence into a nonlinear damage rule and the material deterioration. The ductile damaging process is calculated through the so-called “cylindrical decomposition” method. The constitutive equations are discussed and numerically implemented. An experimental and numerical investigation for three-point bending tests is reported for aluminum alloy 2024-T351. Crack initiation and propagation in compact tension specimens are also studied numerically. These simulation results show good agreement with experiments. The present model can successfully predict slant fracture as well as the formation of shear lips.  相似文献   

15.
The elastic support method was recently developed to simulate the effects of unbounded solids in the finite element analysis of stresses and displacements. The method eliminates all the computational disadvantages encountered in the use of `infinite' elements or coupled finite element boundary element methods while retaining all the computational advantages of the finite element method. In this paper, the method is extended to the elasto-plastic analysis of fracture in infinite solids by using the load increment approach and including the effects of strain hardening. Numerical tests and parametric study are conducted by analysing a straight crack in an infinite plate. Present results for J integrals and plastified zones are compared, respectively, with analytical solutions and available results obtained by using the body force method. The agreement between the results is found to be very good even if the truncation boundary of the finite element model is located very close to the crack tip or the plastified zone.  相似文献   

16.
A model for microstructurally short crack propagation in a grain structure of a polycrystalline material is developed. The crack propagation model is based on a crystal plasticity model and a microstructurally short crack propagation model in the spirit of the model by Navarro and de los Rios [A model for short fatigue crack propagation with an interpretation of the short-long crack transition. Fatigue Fract Eng Mater Struct 1987;10:169-86]. Numerical examples, where the combined crystal plasticity and crack propagation model is implemented in a model of a microstructure representing a duplex stainless steel, concludes the paper. Results showing how the misorientation of the crack- and slip-directions between two adjacent austenitic grains influences the crack propagation rate, as the crack propagates across their common grain boundary, are given.  相似文献   

17.
    
A new finite element (FE) framework for fatigue crack propagation (FCP) analysis is proposed. This framework combines the simplicity of standard industrial FCP analysis with the generality and accuracy of a full FE analysis and can be implemented on a small computer by combining standard existing computational tools. In this way it constitutes an attractive alternative to existing approaches. The framework is based on linear elastic fracture mechanics and on FE mesh adaptation. Some novel features are introduced in several of its steps in order to make it efficient and at the same time reasonably accurate. Various computational aspects of the scheme are discussed. A few two‐dimensional numerical examples involving FCP in thin sheets under plane‐stress conditions are presented to demonstrate the performance of the framework. Some of the numerical results are compared to those of laboratory experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
弧长法中初始荷载增量参数符号确定准则的改进   总被引:6,自引:1,他引:5       下载免费PDF全文
在结构非线性全过程跟踪分析中,弧长控制类方法由于其概念简单明了、计算方便可靠,目前已成为一种最主要的跟踪技术。在该方法的使用过程中,初始荷载增量参数符号的确定非常重要,它决定了当前跟踪分析是向前还是返回(Tracing-back)。本文在比较现有准则的基础上,提出了一种依据当前刚度参数进行判定的新准则,并以两个经典算例为例进行考证,其中一个算例同时存在跳跃(Snap-Through)及跳回(Snap-Back)现象且具有分枝路径。分析结果表明,该准则简单实用,在跟踪复杂失稳过程中是非常有效的,具有很好的适用性。  相似文献   

19.
Indirect boundary element methods (fictitious load and displacement discontinuity) have been developed for the analysis of three-dimensional elastostatic and elastodynamic fracture mechanics problems. A set of boundary integral equations for fictitious loads and displacement discontinuities have been derived. The stress intensity factors were obtained by the stress equivalent method for static loading. For dynamic loading the problem was studied in Laplace transform space where the numerical calculation procedure, for the stress intensity factor KI(p), is the same: as that for the static problem. The Durbin inversion method for Laplace transforms was used to obtain the stress intensity factors in the time domain KI(t). Results of this analysis are presented for a square bar, with either a rectangular or a circular crack, under static and dynamic loads.  相似文献   

20.
    
Enhanced transformation field analysis (E-TFA), recently proposed for reduced-order modeling, is here formulated for and applied to multiscale analysis. The approach is able to reproduce a highly complex nonlinear macroscale behavior, resulting from a microstructure with cohesive interfaces embedded in an elasto-plastic bulk. E-TFA features a consistent tangent matrix in its solution procedure, which enables a straightforward definition of the upscaled tangent stiffness tensor. Numerical tests show that, compared to FE 2$$ {}^2 $$, the proposed approach yields accurate solutions at a lower computational cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号