首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion-induced photon emission (IPE) during bombardment of magnesium aluminate spinel crystals MgO·nAl2O3 by 20 keV Ar+ ions was studied. The dependence of the yield of particles in specific excited states on the fluence of incident ions in the range of (0.1–1.6)×1017 ions/cm2 was measured. It was shown that yield of magnesium and aluminum atoms and ions in most excited states do not depend (or slightly depend) on the fluence of ion bombardment. An exception was found for yields of Mg+ ions in the 4s 2S excited state and Al atoms in the 5p 2P0 excited state leading to emission lines at 292.8 and 669.6 nm, respectively. The yield of particles in these excited states drastically decreases at the start of ion bombardment. Analysis of these results and published data on the bombardment-induced surface modification of spinel crystals allows to elucidate the role of crystal structure and chemical bonding in the formation of some excited states. The dependence of excited state yield (except of Mg and Al indicated above) from spinel crystals of different composition MgO·nAl2O3 (n=1.0, 1.5, 2.0, and 2.5) does not reflect quantitatively the variation of the calculated bulk concentration of constituent atoms in these targets.  相似文献   

2.
Investigations of the main parameters of ion-photon emission during Ar+ ion bombardment of Fe and Co metals and Fe-Co alloys have been made. It was shown that the dependence of the quantum yields of the emissions of ejected excited Fe and Co atoms on the concentration of corresponding elements in the alloys generally decreased but showed local maxima. These maxima are related to concentrations of Fe and Co at which intermetallic compounds (FeCo, Fe3Co, FeCo3) are present. It is suggested that this local increase in excited metal atom signals is related to the breaking of intermetallic bonds.  相似文献   

3.
Eu2+ 0.05%, 0.1%, and 0.2% activated LiF-SrF2 eutectic scintillators were prepared by the Bridgman method using 6Li enriched (95%) raw material. The α-ray-induced radio luminescence spectra showed intense emission peak at 430 nm due to an emission from Eu2+ 5d-4f transition in the Eu:SrF2 layers. When excited by 252Cf neutrons, all the samples exhibited almost the same light yields of 5000-7000 ph/n with a typical decay times of several hundreds ns.  相似文献   

4.
A series of Eu3+ activated Li6Y1−xEux(BO3)3 (0.05 ? x ? 1) phosphors were synthesized by solid-state reaction method. The structures and photoluminescent properties of the phosphors were investigated at room temperature. The results of XRD patterns indicate that these phosphors are isotypic to the monoclinic Li6Gd(BO3)3. The excitation spectra indicate that these phosphors can be effectively excited by near UV (370-410 nm) light. The red emission from transition 5D07F2 is dominant. The emission spectra exhibit strong red performance (CIE chromaticity coordinates: x = 0.65, y = 0.35), which is due to the 5D07FJ transitions of Eu3+ ions. The relationship between the structure and the photoluminescent properties of the phosphors was studied. The concentration quenching occurs at x ≈ 0.85 under near UV excitation. Li6Y(BO3)3:Eu3+ has potential application as a phosphor for white light-emitting diodes.  相似文献   

5.
Aluminium oxide (Al2O3) films doped with CeCl3, TbCl3 and MnCl2 were deposited at 300 °C with the ultrasonic spray pyrolysis technique. The films were analysed using the X-ray diffraction technique and they exhibited a very broad band without any indication of crystallinity, typical of amorphous materials. Sensitization of Tb3+ and Mn2+ ions by Ce3+ ions gives rise to blue, green and red simultaneous emission when the film activated by such ions is excited with UV radiation. The overall efficiency of such energy transfer results to be about 85% upon excitation at 312 nm. Energy transfer from Ce3+ to Tb3+ ions through an electric dipole-quadrupole interaction mechanism appears to be more probable than the electric dipole-dipole one. A strong white light emission for the Al2O3:Ce3+(1.3 at.%):Tb3+(0.2 at.%):Mn2+(0.3 at.%) film under UV excitation is observed. The high efficiency of energy transfer from Ce3+ to Tb3+ and Mn2+ ions, resulting in cold white light emission (x = 0.30 and y = 0.32 chromaticity coordinates) makes the Ce3+, Tb3+ and Mn2+ triply doped Al2O3 film an interesting material for the design of efficient UV pumped phosphors for white light generation.  相似文献   

6.
Scintillation properties of Tm-doped Lu3Al5O12 single crystals   总被引:1,自引:0,他引:1  
Using the micro-pulling-down (μ-PD) method, Tm-doped Lu3Al5O12 (Tm:LuAG) single crystals were grown to examine their scintillation properties. In transmittance spectra, they exhibited about 80% transparency in the wavelengths longer than 320 nm and five absorption lines due to Tm3+ 4f–4f transitions were observed. 241Am α-ray excited radioluminescence spectra were measured and intense 4f–4f emission peaks were observed with the host emission. When excited by 137Cs γ-Ray to obtain pulse height spectra, Tm 1% doped LuAG showed the highest light yield coupled with a photomultiplier (PMT) or a silicon avalanche photodiode (Si-APD). The light yield was estimated to be 5800 and 7300 photons/MeV for PMT and Si-APD, respectively. Decay time profiles consist of two exponential components and the fast and slow components are considered to be attributed to the host and the combination of the host and Tm3+ 4f–4f emission, respectively.  相似文献   

7.
The β-Ca2SiO4: (Er3+, Yb3+) powders were synthesized by the simple solid-state process. The obtained samples were given characterizations of X-ray diffraction, Fourier-transform infrared, transmission electron microscopy, and luminescence. The samples have monoclinic parawollastonite phase and irregular morphology. Under the excitation at 980 nm, the obtained β-Ca2SiO4: (Er3+, Yb3+) samples show the intense upconversion (UC) emission. The dosage of Yb3+ has obvious influence on the emission intensities of β-Ca2SiO4: (Er3+, Yb3+) samples. Also, the emission intensity increases gradually with the increasing pump power from 350 to 600 mW. On the basis of luminescent properties of samples, we can conclude that the UC emission originates from the biphotonic process.  相似文献   

8.
Er-doped Lu3Al5O12 (Er:LuAG) single crystalline scintillators with different Er concentrations of 0.1, 0.5, 1, and 3% were grown by the micro-pulling-down (μ-PD) method. The grown crystals were composed of single-phase material, as demonstrated by powder X-ray diffraction (XRD). The radioluminescence spectra measured under 241Am α-ray excitation indicated host emission at approximately 350 nm and Er3+ 4f-4f emissions. According to the pulse height spectra recorded under γ-ray irradiation, the 0.5% Er:LuAG exhibited the highest peak channel among the samples. The γ-ray excited decay time profiles were well fitted by the two-component exponential approximation (0.8 μs and 6-10 μs).  相似文献   

9.
Different concentrations of Er3+ and Yb3+ ions-doped potassium niobate (K0.9NbO3:Yb(x)Er(0.1 − x) for x = 0, 0.01, 0.05, 0.09 and 0.1) polycrystalline powder phosphors were prepared by the conventional solid state reaction method and were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Energy transfer and upconversion fluorescence properties of the Yb3+ and Er3+-codoped phosphors have been discussed. The XRD data has shown mono-phase for pure KNbO3 while the doped samples represented additional phase formation. The SEM micrographs represented the rectangular crystal growth habit for the KNbO3 phosphors when doped with 0.1 mol of Er3+ ions. An intense green emission at 557 nm along with a red emission at 674 nm was observed when the doped samples were excited with 975 nm IR radiation. The upconversion mechanism has been discussed based on the excited state absorption and energy transfer mechanisms.  相似文献   

10.
R. Bastasz 《Thin solid films》1984,121(2):127-133
Beryllium is being considered as a plasma-side material of low atomic number Z for use in fusion reactors. Untreated beryllium surfaces are usually covered by a thin oxide layer which forms during air exposure or from residual gas adsorption in vacuum. Secondary ion mass spectrometry measurements have been made to investigate the durability of this oxide layer during hydrogen ion bombardment at an energy of 1 keV, which is similar to that expected at the plasma edge in a fusion reactor. The surface condition of machined beryllium samples undergoing hydrogen bombardment was monitored by observing secondary ion emission of O-, OH- and BeO-. On the basis of sputtering yield data for BeO, the oxide layer appears to be up to 102 monolayers in thickness. At the metal interface it was possible to determine the cross section for the removal of adsorbed oxygen. The measured value is 1.5 × 10-17 cm2, which is in agreement with bulk oxide sputtering data. This suggests that adsorbed oxygen forms a surface oxide with a binding energy that is similar to that of the bulk oxide. These results are used to predict the conditions in which an oxide layer will exist on exposed beryllium surfaces during fusion reactor operation.  相似文献   

11.
A new NaAlSiO4:0.1Eu2+ phosphors were synthesized at different temperatures using a liquid phase precursor (LPP) technique. The XRD patterns indicate the presence of hexagonal nepheline phase for all the samples. The synthesized phosphors can be excited efficiently in the broad near-UV region. The PL emission spectra showed a broad emission peak at around 551 nm corresponding to 5d → 4f transition of Eu2+ ions. The synthesized phosphors showed better thermal stability when compared with the standard YAG:Ce3+ phosphor.  相似文献   

12.
In the search for new scintillator materials, Ce3+ doped chlorides are a promising class of materials, combining a high efficiency and fast response time. Even shorter response times may be achieved by replacing Ce3+ by Pr3+ or Nd3+ as the lifetime of the d-f emission is substantially shorter for these ions. Here we report on the luminescence properties of Ce3+, Pr3+ and Nd3+ in RbCl and investigate the potential as a scintillator material. Under UV excitation Ce3+ shows d-f emission between 325 and 425 nm. The emission originates from multiple (differently charge compensated) Ce3+ sites. The luminescence lifetime varies with wavelength and is ∼40 ns for the longer wavelength emission. For RbCl:Pr3+ three d-f emission band are observed between 250 and 350 nm which can be assigned to transitions from the lowest energy fd state to different 3HJ (J = 4-6) states within the 4f2 configuration of Pr3+. The decay time is ∼17 ns. For the Nd3+ activated sample a weak emission band around 220 nm is observed only at 8 K which may be due to d-f emission. The very short lifetime (4 ns) is faster than the radiative lifetime, indicating that the d-f emission is quenched by relaxation to lower lying 4f3 states or by the process of photoionization. Under VUV excitation at wavelengths below 175 nm (the bandgap of RbCl) the d-f emission is very weak for Ce3+, Pr3+ and Nd3+ doped RbCl and the emission spectra are dominated by defect related emission. This indicates that energy transfer from the host lattice to the fd states is inefficient which prevents application as a scintillator material.  相似文献   

13.
Relaxation losses of magnetic excitations in nanoscale films of Y3Fe5O12 (YIG) were studied. The films were obtained by laser molecular-beam epitaxy (LMBE). Ferromagnetic resonance linewidth ΔH was found to increase sharply as the temperature decreased from 300 to 77 K. The observed growth of ΔH is explained by typical relaxation processes caused by the presence of Fe2+ ions. This effect is not observed in thick films of YIG grown by liquid-phase epitaxy and containing Pb4+ ions, and, hence, we have concluded that the presence of acceptor ions in YIG films obtained by LMBE will facilitate decreasing the concentration of Fe2+ ions and, a result, diminishing relaxation losses.  相似文献   

14.
Yttrium iron garnet particles were synthesized in two different ways: first, in an ammonium nitrate melt (ANM) and second, via a solid-state reaction (SSR) route. The structural and magnetic properties of the samples were compared using XRD, SEM and dc magnetization measurements. It was observed for the ANM technique that the phase formation of YIG starts at 1000 °C and then develops with increasing temperature and sintering times. The saturation magnetization, Ms, increases sharply with increasing annealing temperature and then saturates at around 23 emu g?1 above 1100 °C, while the coercivity decreases due to the increasing particle size. An almost single-phase sample was obtained through ANM route by annealing for 2 h at 1300 °C, after which the YIG fraction in the SSR sample was only 0.34, with Ms = 7.08 emu g?1. The average particle sizes of the ANM samples were calculated using experimentally determined Ms values. It appeared that they vary from the sub-micron to the micron range, depending on the sintering temperature, and this coincides with the values determined from the SEM micrographs. These samples have homogeneous structures, small grains, good magnetic properties, and do not contain massive agglomerates. Therefore, the synthesis of YIG via the ANM technique represents another alternative to the SSR route.  相似文献   

15.
《Optical Materials》2005,27(3):625-633
Er3+-doped La2(WO4)3 single crystals were grown by the Czochralski technique. The absorption spectra, fluorescence spectra and fluorescence decay curves of the crystals were measured at room temperature. The spectroscopic parameters, including intensity parameters Ωt (t = 2, 4, 6), spontaneous emission probability, fluorescence branching ratio, radiative lifetime, and stimulated emission cross-section were estimated. The fluorescence decay curves of fluorescence manifolds 4I13/2, 4I11/2, and 4S3/2 were measured for crystal and powder samples, respectively. The effect of radiation trapping on the spectroscopic parameters was discussed. Green up-conversion fluorescence bands centered at wavelengths of 530 nm and 550 nm were observed when the crystal was excited at 977 nm. The possible up-conversion mechanisms were proposed.  相似文献   

16.
In this paper, we will provide an overview of the internal photoemission (IPE) and the significance of this technique when combined with spectroscopic ellipsometry (SE) to investigate the interfacial electronic properties of heterostructures. In particular, the main interest is focused on the electron transport mechanism and properties at and near the interface of the technologically important metal-oxide-semiconductor (MOS) devices. Not until recently, IPE and SE have become important metrology tools in band offset characterization for the MOS materials. The most common and straightforward application of IPE and SE is to determine how the Fermi level of the metal, and the conduction and valence bands of the semiconductor align with those of the oxide of the MOS structure. For demonstration, we will present the results recently obtained on a set of MOS devices consisting of metal gate / high-k dielectric stack / Si and III-V high mobility substrate. The examples include [TaN/TaSiN] metal gate / [HfO2/SiO2] dielectric stack / Si substrate and Al metal gate / Al2O3 dielectric / InxGa1 − xAs substrate.  相似文献   

17.
A series of yellow-emitting phosphors based on a silicate host matrix, Ca3 − xSi2O7: xEu2+, was prepared by solid-state reaction method. The structure and photoluminescent properties of the phosphors were investigated. The XRD results show that the Eu2+ substitution of Ca2+ does not change the structure of Ca3Si2O7 host and there is no impurity phase for x < 0.12. The SEM images display that phosphors aggregate obviously and the shape of the phosphor particle is irregular. The EDX results reveal that the phosphors consist of Ca, Si, O, Eu and the concentration of these elements is close to the stoichiometric composition. The Ca3 − xSi2O7: xEu2+ phosphors can be excited at a wavelength of 300-490 nm, which is suitable for the emission band of near ultraviolet or blue light-emitting-diode (LED) chips. The phosphors exhibit a broad emission region from 520 to 650 nm and the emission peak centered at 568 nm. In addition, the shape and the position of the emission peak are not influenced by the Eu2+ concentration and excitation wavelength. The phosphor for x = 0.045 has the strongest excitation and emission intensity, and the Ca3 − xSi2O7: xEu2+ phosphors can be used as candidates for the white LEDs.  相似文献   

18.
Single-phase yttrium iron garnet (Y3Fe5O12, YIG) nanocrystals have been synthesized via a rapid chemical coprecipitation process with reverse strike operations, followed by calcining the precipitates at the temperature around 750 °C. The formation of YIG nanocrystals from the amorphous precipitates and their microstructural features and magnetic properties were investigated by FT-IR, XRD, TG-DSC, FESEM, TEM and VSM. It has been found that the as-obtained precipitates could be thermally activated to directly form the crystalline phases of garnet structure around 650 °C, including cubic YIG and minor tetragonal YIG but no trace of YFeO3, which was often involved during the synthesis of YIG or doped-YIG when a chemical coprecipitation method was used. The calcinations could make the tetragonal YIG entirely transform into the cubic phase at 750 °C and allow the crystallites of the latter to grow from ∼22 nm to ∼50 nm in size almost linearly as a function of the temperature ranging from 650 °C to 900 °C. Moreover, the room temperature saturation magnetization of the samples after calcinations at various temperatures showed a nonlinear increase from 0.24 emu g−1 to 24.54 emu g−1, which should be associated with the alignments of atomic magnetic moments in the materials from completely-disordered to partially-ordered firstly and further to completely-ordered and, in the last stage, mainly with the growing YIG nanocrystals.  相似文献   

19.
Pure ZnO:Eu3+ nanoparticles (~ 50 nm) were prepared by a solution combustion method. ZnO and Eu2O3 were used as starting materials and dissolved in nitric acid. Citric acid was used as a fuel. The reaction mixture was heated at 350 °C resulting into a rapid exothermic reaction yielding pure nanopowders. The atomic weight concentration of Eu3+ doped in ZnO was 20%. Transmission electron microscopy (TEM) was used to study the particle size and morphology. The nanopowders were characterized for phase composition using X-ray diffractrometry (XRD). Particle size distribution (PSD) analysis of ZnO: Eu3+ showed particle sizes ranging from 30 to 80 nm.The photoluminescence emission spectra of ZnO:Eu3+ nanostructures showed a strong band emission around 618 nm when excited with 515 nm wavelength.  相似文献   

20.
Sm3+-doped oxy-fluoride (OFSm) powders are prepared by the melt quenching technique and characterized using FE-SEM, optical absorption and emission techniques. Spectroscopic properties of Sm3+-doped oxy-fluoride powders with different Sm3+ concentration and sintering temperature are presented and discussed by using the absorption, emission measurements. The Judd–Ofelt intensity (J–O) parameters (Ωλ, where λ = 2, 4 and 6), measured from the experimental oscillator strengths of the absorption spectra, are used to evaluate the radiative parameters of the fluorescence transitions. Intense orange emission can be obtained when excited with 325 nm wavelength by increasing the sintering temperature to 1400 °C. Ratio of fluorescence intensities arising from the two closing lying 4F3/2 and 4G5/2 levels is studied, concentration quenching has been noticed beyond 2 mol% of Sm3+ ions concentration. The excellent spectroscopic properties along with the outstanding thermal stability suggest that the OFSm03 powders may become an attractive laser material to exhibit efficient visible lasing emission in the orange spectral region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号