首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 359 毫秒
1.
氟掺杂型锂锰氧化物的电化学性能研究   总被引:3,自引:0,他引:3  
以LiNO3、LiF和Mn(AC)2·4H2O为原料,采用柠檬酸配位法,通过控制n(Li)n(Mn)和掺氟量,在750℃下制备尖晶石型系列Li1+xMn2-xO4-yFy电极材料。Li1+xMn2-xO4-yFy的充放电实验表明,随着锂掺入量的增加,材料的首次放电容量迅速降低,但材料的循环稳定性明显提高。Li1.05Mn2O4的放电容量最高(116mAh g),而且稳定性也较好。室温下,5次循环后容量仅衰减1.92%。掺氟明显降低材料在高温条件下的容量损失,但随着氟掺杂量的增加,材料的首次放电容量降低较大。同时掺杂锂和氟的材料比仅掺杂锂的材料具有更好的循环稳定性,Li1.05Mn1.95O3.95F0.05循环稳定后,放电比容量保持在103.5mAh g。Li1.15Mn1.85O3.9F0.1循环4次以后,便没有容量衰减,放电比容量稳定在98.5mAh g,因此,从比容量和循环稳定性两方面考虑,Li1.05Mn1.95O3.95F0.05和Li1.15Mn1.85O3.9F0.1是较好的电极材料。  相似文献   

2.
采用溶胶-凝胶法合成了复合离子掺杂的尖晶石型锰酸锂Li1.02Mn1.92Al0.02Cr0.02Mg0.02O4-xFx(x=0,0.06)正极材料,并用XRD、CV、EIS和充放电测试等研究了其结构和电化学性能。结果表明,F与金属离子(Li、Al、Cr、Mg)的复合掺杂不仅提高了材料的比容量,还增加了尖晶石结构的稳定性,改善了材料的循环性能和可逆性能;充放电测试结果表明,Li1.02Mn1.92Al0.02Cr0.02Mg0.02O3.94F0.06具有优越的循环性能,常温下,以1/3C充放电的首次放电容量及50个循环后的容量保持率分别为117.9 mAh/g,96.9%。  相似文献   

3.
刘水香  张海朗 《化学世界》2013,54(1):1-4,17
采用溶胶-凝胶法合成层状LiNi1/3Co1/3Mn1/3O1.95Y0.05(Y=O,F,Cl,Br)正极材料,在850℃空气氛围下煅烧20h得到晶型较好的正极材料。以XRD、SEM和充放电测试等手段对材料的晶体结构、表观形貌和电化学性能进行表征。XRD显示F-和Cl-掺杂材料具有高度有序的二维层状结构;充放电测试表明,掺杂F-和Cl-的材料放电比容量、循环性能和倍率性能均优于未掺杂材料,特别是掺杂F-材料在55℃,电压范围为2.0~4.6V,0.15mA电流下首次放电比容量高达207.5mAh/g,且0.9mA电流下第60次循环的容量仍达到165.1mAh/g。掺杂Br-的材料结构稳定性、循环性能和放电比容量均比未掺杂材料差。  相似文献   

4.
以Mn3O4、Li2CO3、Co3O4、Al2O3和NiCO_3为原料,固相法合成Co、Al、Ni掺杂LiMn_2O_4。采用X-射线衍射、扫描电子显微镜、恒电流充放电和电化学阻抗等技术研究合成材料的结构、形貌及电化学性能。结果表明:Co、Al、Ni掺杂没有改变LiMn_2O_4的晶体结构,但晶格常数略有减小。掺杂后LiMn_2O_4晶粒规整,表面光滑,晶粒形貌差别不大。掺杂后LiMn_2O_4的比容量有所下降,循环性能得到改善,容量保持率是Li Co0.05Mn1.95O4Li Ni0.05Mn1.95O4Li Al0.05Mn1.95O4LiMn_2O_4。Li Co0.05Mn1.95O4的循环性能最好。掺杂后LiMn_2O_4锂离子扩散系数有所提升,其中Li Co0.05Mn1.95O4的锂离子扩散系最大。  相似文献   

5.
采用溶胶-凝胶法合成制备了分子式为Li1.05Co0.05VxMn1.95-xO4(x=0.02、0.05、0.08)的固溶体样品。利用XRD、SEM对材料进行结构形态表征,并以合成的材料为正极材料进行循环伏安(CV)和恒电流充放电测试,结果显示:固溶体Li1.05Co0.05VxMn1.95-xO4具有较好的尖晶石结构,且颗粒分布均匀,晶面光滑。电化学测试结果显示:其具有较好的充放电性能和良好的循环性能,在室温0.5 C充放电倍率下,Li1.05Co0.05V0.05Mn1.9O4材料的初始放电比容量为110.7 mAh/g,且50次循环后,容量保持率为94.6%。  相似文献   

6.
以LiNO3和MnNO3为原料,溶胶凝胶法制备前驱体后,利用微波加热法,在750℃条件下保温20min,合成了Li1+xMn2Oy。利用XRD和FTIR分析手段,研究了锂掺杂量对材料结构的影响,利用恒电流充放电法,研究了材料的电化学性质。XRD和FTIR实验说明,适量的锂离子掺杂不改变材料的立方尖晶石结构;充放电实验显示,Li1.04Mn2O4.056是比较理想的电极材料,其首次放电比容量达到118.6mAh/g,5次循环后的容量损失率也仅为1.9%。  相似文献   

7.
以V2O5、NH4H2PO4、Li2CO3、(CH3COO)2Mn.4H2O原料,以葡萄糖和抗坏血酸为复合还原剂及碳源,通过常温还原-低温烧结法制备锂离子电池正极材料Li3V(2-2x/3)Mnx(PO4)3/C(x=0,0.03,0.06,0.09,0.12)。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试对该正极材料的物相、结构、微观形貌以及电化学性能进行了表征。结果表明,Mn2+的掺杂对磷酸钒锂电化学性能的发挥影响很大,其中当锰掺杂量x=0.09时材料表现出最佳的电化学性能,0.2 C倍率条件下首次放电比容量131 mAh/g,循环50次后容量衰减仅为4.02%。  相似文献   

8.
采用溶胶凝胶法,用柠檬酸作为鳌合剂,在不同的温度下合成制备均一的层状锂离子正极材料Li(Co0.2Ni0.4Mn0.4)O2。XRD、SEM实验数据表明,在较低温度700°C下便可制得层状Li1+x(Co0.2Ni0.4Mn0.4)O2,并具有均一的颗粒形貌,颗粒大小为300 nm左右。XPS显示其正极材料中的Co、Ni、Mn的化学价态分别为+3,+2,+4,均为它们的稳定价态。700°C下合成的材料在20mA/g,2.9~4.6 V电压范围内,首次放电比容量为210.2 mAh/g,50周后放电比容量仍高达185.3 mAh/g,容量损失为11.84%。  相似文献   

9.
采用"熔融浸渍法"合成了Mg和F共掺杂的不同温度下的锂离子电池正极材料Li Mn2-xMgxO3.97F0.03(x=0.05,0.1);煅烧温度为700,750和800°C。通过XRD对样品进行测试,样品为单一尖晶石结构的物相;并用SEM测试,对样品进行了形貌研究。用所制备的材料作为正极材料组装了模拟锂离子电池;在室温下进行恒电流充-放电性能测试,测试条件为3.3~4.3 V和0.2mA/cm2电流密度。随着材料制备温度的升高,电池的初始放电容量有逐渐增加的趋势,但充放电循环的容量损失也逐渐增加;氟掺杂量一定,镁掺杂量较多时,对应温度下煅烧的样品的结晶程度较好,样品的电化学性能也较好。在800下°C样品Li Mn1.9Mg0.1O3.97F0.03初始容量高达108 mAh/g,60次充放电循环后,其容量保持率高达81%,具有优良的循环稳定性能。  相似文献   

10.
本文以葡萄糖为碳源,采用原位复合法制备锂离子电池复合负极材料Li4Ti5O12@C,同时探讨了不同碳包覆量对Li4Ti5O12的影响。通过X-射线衍射和扫描电子显微镜对合成出的材料结构及表面形貌进行表征,采用恒电流充放电和电化学阻抗等技术对其进行电化学性能测试。结果表明:碳包覆量为3 %的Li4Ti5O12颗粒均匀且电化学性能最好。在0.5 C下,首次放电比容量为185.9 mAh/g,循环50次后,其放电比容量仍为161.5 mAh/g。在2.0 C下,首次放电比容量为99.9 mAh/g,材料表现出优良的电化学性能。  相似文献   

11.
阴阳离子复合掺杂型Li_(1+x)Mn_(2-x)O_(4-y)F_y的合成机理研究   总被引:5,自引:0,他引:5  
以LiNO3、LiF和醋酸锰为原料,采用柠檬酸络合法,通过控制原材料配比,在750℃下,制备出尖晶石型系列Li1+xMn2-xO4-yFy电极材料。运用等离子体发射光谱法和电位分析法相结合的分析手段测定材料的实际组成,通过分析试样的IR和XRD谱图参数、氟和锂掺杂量与锰的平均氧化数以及材料晶胞常数的变化关系,研究了氟的掺杂取代机理,并得出掺杂的氟取代λMnO2骨架中氧的结论;结合合成材料前驱体的TGA DTA谱图,阐述了Li1+xMn2-xO4-yFy的形成过程。  相似文献   

12.
低共熔混合锂盐合成Co和Al共掺杂的LiNiO2   总被引:2,自引:0,他引:2  
在空气中,采用低共熔混合物L iNO3-L iOH为锂盐,制备了Co和A l共掺杂锂离子电池正极材料L iN i0.8Co0.15A l0.05O2。XRD分析表明,制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的放电电流密度和2.7—4.2 V的电压范围内,L iN i0.8Co0.15A l0.05O2首次放电比容量达147.6 mA.h/g,库仑效率达84.3%,第20次的放电比容量为133.8 mA.h/g。该合成新工艺,能制备出电化学性能良好的Co和A l共掺杂的L iN iO2正极材料。  相似文献   

13.
碳包覆对LiNi_(0.5)Mn_(1.5)O_4电化学性能的影响   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用溶液沉积-真空热解法制备了LiNi_(0.5)Mn_(1.5)O_4/C复合材料。用热重与差热分析、X射线衍射分析、扫描电镜分析及电化学测试等手段对LiNi_(0.5)Mn_(1.5)O_4/C的微观结构、表面形貌和电化学性能进行了研究。结果表明,蔗糖热分解后在LiNi_(0.5)Mn_(1.5)O_4颗粒的表面包覆形成了一层无定形碳。无定形碳可以有效阻止LiNi_(0.5)Mn_(1.5)O_4颗粒的聚集,增加电极的导电面积,降低电池极化,从而改善LiNi_(0.5)Mn_(1.5)O_4的电化学性能。与未包覆的LiNi_(0.5)Mn_(1.5)O_4粉末相比,LiNi_(0.5)Mn_(1.5)O_4/C复合材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。0.2C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量达到144.8mA.h.g-1,经60次循环后平均每次循环的容量损失仅为0.0081%。而1.0C和2.0C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量分别保持在131.9mA.h.g-1和122.4mA.h.g-1。  相似文献   

14.
Hydrothermal method has been successfully used to synthesize a spheroidic zinc doped Li4Ti5O12 (Li3.95Zn0.05Ti5O12) with large specific surface area. X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to characterize the structure and morphology. The electrochemical properties are measured by the galvanostatic method and the results demonstrate that the Li4Ti3.95Zn0.05O12 has a large discharge capacity of 182.45 mAh/g at 0.1C. With the favorable transport channel caused by the doped Zn2+, the Li3.95Zn0.05Ti5O12 exhibits an enhanced high rate capacity of 122.38 mAh/g and better cyclic stability at 10C, which is promising for application in lithium ion batteries.  相似文献   

15.
Fibrous membranes are promising as high‐performance lithium ion battery separators because of high porosity and superior electrolyte uptake. Electrospinning is a popular approach to produce fibrous membranes, but its production rate is very low. As a comparison, mass production of fibrous membranes can be achieved by centrifugal spinning. This study reports fibrous membranes based on poly(vinylidene fluoride)/poly(acrylonitrile) blends by centrifugal spinning and their application as lithium ion battery separators. The blend fibrous membranes have high electrolyte uptake of about 300%, excellent dimensional stability at 180 °C and good mechanical strength over 18 MPa. The coin cells with the blend fibrous membranes as separators show high discharge capacity of 147.7 mAh/g at 0.2 C and superior C‐rate performance. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44515.  相似文献   

16.
层状结构材料LiNi1/3Co1/3Mn1/3O2具有高比容量、高循环性能、低成本和环保等优点,有望取代LiCoO2成为新一代锂离子电池正极材料。在介绍LiNi1/3Co1/3Mn1/3O2的结构特点和电化学反应特性的基础上,对其主要合成方法进行了详细评述,总结了该正极材料的阴阳离子掺杂、复合离子掺杂以及表面包覆改性等技术,指出国内外目前锂离子电池材料研究中存在的问题和未来的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号