首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The dielectric properties of c-axis epitaxial BaTiO3 thin film on LaAlO3 are investigated at frequencies of 0.5–30 GHz. For the measurements, interdigital capacitors with the Au/Ti electrode configurations of five fingers pairs that are 15 m wide and spaced 2 m apart are prepared by photolithography and lift-off patterning. Finger length varies from 20 to 80 m. The capacitance of epitaxial BaTiO3 films exhibited no frequency dependence up to 10 GHz with the exception of slightly upward tendency of capacitance in BaTiO3 film with a finger length of 80 m due to the self resonant frequency at 20 GHz. The Q-factors of the capacitors, defined as Q = 1/CR, are decreased up to 10 GHz with increased frequency. At 10 GHz, the BaTiO3 film has a tunability [defined as k(V) = [C(0)–C(V)]C(0)] of 1.5% at 15 V, a loss tangent of 0.2 at room temperature. The small tunability can be interpreted as a result of in-plane compressive stress of BaTiO3 film exhibiting large dielectric anisotropy. For the improvement of tunability and dielectric loss in the interdigital BaTiO3 capacitor, the tetragonality (c/a) of epitaxial BaTiO3 film and design of interdigital capacitor should be modified.  相似文献   

2.
Ba(Zr, Ti)O3 thin films have attracted great attention in recent years for their potential use in DRAMs and MCMs due to their high dielectric constant and relatively low leakage current. However, their tunable dielectric properties were rarely investigated and the corresponding potential for tunable microwave applications was seldom reported. In this paper, we present the tunable dielectric behavior of BZT thin films deposited by RF magnetron sputtering from a Ba(Zr0.3Ti0.7)O3 ceramic target on MgO single crystal substrates. The composition, thickness and crystallinity of the thin films were analyzed by Rutherford backscattering (RBS), scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The dielectric constant and loss tangent were measured as a function of electric field (0–7 kV/mm) and temperature (–140 to +160°C) at frequencies up to 1 MHz, using interdigital capacitors (IDC) with Au electrodes on thin films. By optimizing the preparation process, a tunability {defined as = [ (0) – (Emax)]/ (0)} of 76% at Emax = 7 kV/mm and a low loss tangent of 0.0078 can be achieved. In addition, the influence of annealing temperature on the dielectric properties of the thin films is also discussed.  相似文献   

3.
《Integrated ferroelectrics》2013,141(1):863-869
Epitaxial (111) oriented ferroelectric (Ba1 ? xSrx)TiO3 (BST) films were deposited on MgO (111) single crystals using pulsed laser deposition. Structural properties of BST films were investigated using X-ray diffractometer. The dielectric properties of BST films were investigated under the dc bias field of 0–40 V using interdigital capacitors (IDT) fabricated by photolithography and etching process. The small signal dielectric properties of BST films were calculated by modified conformal mapping both the measured data using an impedance gain/phase analyzer and the reflection coefficient data measured using a HP 8510C vector network analyzer in 0.05–10 GHz at room temperature. The IDT capacitor based on (111) oriented BST film exhibits about 40% of capacitance change with an dc bias of 40 V which value is somewhat smaller than that of the IDT device based on (001) oriented BST film. But the dielectric quality factor value is about twice that of the device based on (001) oriented BST film.  相似文献   

4.
《Integrated ferroelectrics》2013,141(1):965-972
The microstructure of Ba0.6Sr0.4TiO3 (BST)/RuO2 multi-layers grown on (100) MgO and (100) YSZ substrates, respectively, by pulsed-laser deposition (PLD) has been studied by transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). The RuO2 films deposited at 700°C adopt epitaxial relationships with both substrates. The epitaxial films on (100) MgO consist of two variants with an orientation relationship given by (110) RuO2//(100) MgO and [001] RuO2//[011] MgO. The epitaxial films on (100) YSZ contain four variants with an orientation relationship given by (200) RuO2//(100) YSZ and [011] RuO2//[001] YSZ. The BST films deposited on the RuO2 electrode are epitaxial on the (200) RuO2 films deposited on YSZ, and non-epitaxial on the (110) RuO2 films deposited on MgO. The epitaxial relationship between the BST and (200) RuO2 films can be described as (111) BST//(200) RuO2 and [1&1macr;0] BST//[011] RuO2. The BST films contain at least four variants. The growth and microstructural properties of the multi-layer structures can be understood based on geometrical consideration of the crystal structures.  相似文献   

5.
Barium strontium titanate ((Ba,Sr)TiO3; BST) thin films were prepared on platinum-coated MgO substrates at 650°C by metalorganic chemical vapor deposition (MOCVD). Perovskite single phased BST thin films were obtained. Dielectric constant at 1 kHz–100 mV was 1000. Multilayer ceramic capacitor with twelve BST dielectric layers of 0.26 m thick was formed on the MgO substrate. Capacitance and dissipation factor (tan) at 1 kHz–100 mV were 32 nF and 1.5% respectively. Capacitance per unit volume of 33 F/mm3 provided 10 to 20 times larger volumetric efficiency than the conventional multilayer ceramic capacitors. Temperature coefficient of capacitance was –4000 ppm/°C. The leakage current at 1 V was 2.3×10-9 A that yielded an acceptable CR product of 12.8 M-F. MOCVD was proposed as one of the promising manufacturing technologies for multilayer ceramic capacitors of high performance with sub-micron thick dielectric layers.  相似文献   

6.
Abstract

A tunable phase shifter was fabricated with epitaxial Ba0.5Sr0.5TiO3 (BST) thin film and gold coplanar waveguide. BST thin film of the thickness ~0.5 μm was deposited by laser ablation on the MgO(OOl) single crystalline substrate. Gold electrode of the thickness ~2 μm was prepared by the sequence of thermal evaporation, electroplating, and wet etching. Epitaxial quality of the BST thin film was confirmed by X-ray diffraction. The microwave performance of phase shifter was measured at room temperature in the frequency range of 8–12 GHz, and with applied bias voltage of up to 30 V. Effect of Mn dopant in the epitaxial films was also considered.  相似文献   

7.
Ferroelectric properties of samarium substituted Bi4Ti3O12 films, Bi3.15Sm0.85Ti3O12 (BST), were evaluated for use as lead-free thin film ferroelectrics for FeRAM applications. The BST films were fabricated on the Pt/Ti/SiO2/Si(100) substrates by a metalorganic solution deposition method. The measured XRD patterns revealed that the BST films showed only a Bi4Ti3O12-type phase with a random orientation. The BST film capacitors showed excellent ferroelectric properties. For the film capacitor annealed at 700C, 2Pr of 64.2 C/cm2 and 2Ec of 101.7 kV/cm at applied electric field of 150 kV/cm were observed. The capacitor did not show any significant fatigue up to 1.5 × 108 read/write switching cycles at a frequency of 1 MHz, which suggests that the samarium should be considered for a promising lanthanide elements to make a good thin ferroelectric film for memory applications.  相似文献   

8.
The thickness dependence of ferroelectric permittivity of (Ba, Sr)TiO3 has been investigated. The BST films could be obtained to have a simple cubic perovskite structure, space group Pm3m, and practically c-axis epitaxial structure deposited at 800C. Through post-annealing process, we have improved the dielectric properties; dielectric permittivity, dielectric loss, and tunability. The change in dielectric properties before and after annealing is attributed to the change in film strain and the contraction in film lattice. As the thickness of BST films increases from 55 nm to 350 nm, the dielectric constant of BST films increases from about 100 to above 670 due to the reduction of interfacial dead layers with low dielectric constant between films and top electrodes. The dielectric loss of BST thin films decreased as the thickness increases. The existence of interfacial dead layers in a thinner film had a larger effect on the effective dielectric constant than tensile strain between the BST films and MgO substrate.  相似文献   

9.
Tin oxide thin films were deposited on the R-cut sapphire substrate by the electron-beam evaporation of a ceramic SnO2 source. X-ray diffraction and transmission electron microscopy studies revealed that the films deposited at lower temperatures were amorphous while those grown at temperatures above 350°C consisted of the -SnO phase with the PbO type structure. Epitaxial -SnO films on the R-cut sapphire substrate were obtained when deposited at 600°C. Atomic force microscopy studies showed that films deposited at low temperature have a smooth surface, while epitaxial SnO films deposited at high temperatures (above 600°C) have a relatively rough surface. The atomic mobilities in the films at the various deposition temperatures and the lattice mismatch between the films and the substrates ultimately determine the microstructure and surface mophology. X-ray photoelectron spectroscopy analysis shows that the Sn/O ratios are 52.7/47.6 for the amorphous film deposited at the ambient temperature (30°C), 48.8/51.2 for the films deposited at 350°C, and 49.2/50.8 for the epitaxial film deposited at 600°C. Electrical properties were determined by four point probe measurements.  相似文献   

10.
《Integrated ferroelectrics》2013,141(1):1305-1314
Compositionally graded (Bax,Sr1 ? x)TiO3 [BST] ferroelectric thin films have been received much attention in graded ferroelectric devices due to their unique properties, such as large pyroelectric coefficients, large polarization offset and small temperature coefficient of dielectric constant for microwave tunable devices. Compositionally graded BST thin films were deposited epitaxially on LaAlO3 [LAO] and Nb-doped SrTiO3 [STO:Nb] substrates by pulsed laser deposition. The planar and parallel dielectric properties of compositionally graded BST epitaxial thin films ware investigated in the frequency ranges of 100 Hz ~ 1 MHz as a function of the direction of the composition gradient with respect to the substrate at room temperature. The dielectric properties of the graded BST films depended strongly on the direction of the composition gradient with respect to the substrate. The graded ST → BT films grown on LAO and STO:Nb substrates exhibited a excellent dielectric properties than the graded BT → ST films.  相似文献   

11.
Integrated electroceramic thin-film devices on semiconducting or insulating substrate materials offer a wide variety of attractive attributes, including high capacitance density, nonvolatile memory, sensor/actuator ability, and other unique electrical, electromechanical, magnetic and optical functions. Thus the ability to pattern such electroceramic thin films is a critical technology for future device realization. Patterned oxide thin-film devices are typically formed by uniform film deposition followed by somewhat complicated post-deposition ion-beam or chemical etching in a controlled environment i.e., a subtractive method. We review here an upset technology, a different way of patterning, by an additive approach, which allows for the selective deposition of electroceramic thin layers without such post-deposition etching. In this method, substrate surfaces are selectively functionalized with hydrophobic self-assembled monolayers to modify the adhesion of subsequently deposited solution-derived electroceramics. The selective functionalization is achieved through microcontact printing (-CP) of self-assembled monolayers of the chemical octadecyltrichlorosilane on substrates of current technical interest. Subsequent sol-gel deposition of ceramic oxides on these functionalized substrates, followed by lift-off from the monolayer, yields high quality, patterned oxide thin layers only on the unfunctionalized regions. A variety of micron-scale dielectric oxide devices have been fabricated by this method, with lateral resolution as fine as 0.5 m. In this paper, we review the monolayer patterning and electrical behavior of several patterned electroceramic thin films, including Pb(Zr,Ti)O3 [PZT], LiNbO3, and Ta2O5. A multilevel example is also given which combines selective MOCVD deposition of metal electrodes and sol-gel patterned PZT for Pt//PZT//Pt//Si(100) ferroelectric memory cells.  相似文献   

12.
ABSTRACT

Stress controlled epitaxial ferroelectric Ba0.5Sr0.5TiO3 (BST) films have been deposited on Gd2O3/SrTiO3 by pulsed laser deposition with oxygen background pressure of 200 mTorr at the deposition temperature of 750°C. In order to control the stress in BST films, oxygen pressures for Gd2O3 buffer layers have been varied from 0.1 to 100 mTorr, while that of BST films have been fixed at 200 mTorr. It has been found that the lattice parameters of the BST films deposited on Gd2O3 were changed. Furthermore, microwave properties of co-planar waveguide (CPW) fabricated on BST films were investigated by a HP 8510C vector network analyzer from 1–20 GHz. Large dielectric tunabilities were observed from the CPW's fabricated on BST films deposited on Gd2O3 layers deposited at low and high oxygen pressures, 0.1 and 100 mTorr, respectively.  相似文献   

13.
Perovskite Ba 0.6 Sr 0.4 TiO 3 thin films were epitaxially grown on (001) LaAlO 3 and (001) MgO by using pulsed laser ablation. The films are single crystal cubic structure with interface relationship of (001) BST // (001) MgO and <100> BST // <100> MgO for the films on (001) MgO and (001) BST // (001) LAO and <100> BST // <100> LAO . High-resolution transmission electron microscopy studies indicated that the initially grown layer of the film on both (001) MgO and (001) LAO is TiO 2 monolayer. Equally spaced misfit dislocations were found to form at the interface to release the lattice mismatch energy. Physical property measurements show that the films exhibit excellent room temperature dielectric behavior with very low dielectric loss of 0.007 and very large tenability of 45% at 1 MHz. The figure of merit of 60°/dB has been achieved for the microwave phase shifter operated at 24 GHz and room temperature.  相似文献   

14.
Ba(Ti1 –x Sn x )O3 solid solutions were prepared by a solid state reaction method, and their dielectric and tunable characteristics were investigated together with the microstructures and diffused phase transition behaviors. The dielectric relaxation behaviors were observed and became stronger with increasing x.The obvious field dependence of the present system was observed with high dielectric constant and low loss at relatively lower DC electric field. The excellent tunable dielectric characteristics were achieved for x= 0.15 at room temperature: tunability 56%, tan 0.003 at 10 kHz under 7.6 kV/cm, indicating that it is a promising candidate for electric-field tunable dielectrics working at room temperature.  相似文献   

15.
Bismuth titanate Bi4Ti3O12 thin films were prepared on LaAlO3(012) substrates by a spin coating-pyrolysis process using metal naphthenates as starting materials. The c-axis oriented Bi4Ti3O12 thin films, which contained no second phases as –2 scans, were obtained by heat-treatment in air at temperatures of 600°C and above. X-ray diffraction pole-figure analysis showed that the Bi4Ti3O12 thin film has an epitaxial relationship with the LaAlO3 substrate.  相似文献   

16.
The perovskite-type-oxide solid solution SrY0.5+x Ta0.5+x O3– was synthesized and its properties were investigated. The single phase character of the samples was confirmed by X-ray diffraction when 0 x 0.02, while lines from the impurity phase SrY2O4 appeared in patterns of x 0.03. The conductivities of SrY0.52Ta0.48O3– were about an order of magnitude higher than those of SrY0.50Ta0.50O3. The results of electrochemical measurements such as emf measurements of gas concentration cells, isotope effect in conductivity, and oxygen partial pressure dependence of conductivity showed that SrY0.52Ta0.48O3– exhibited pure protonic conduction in reducing atmospheres and p-type electronic conduction under high oxygen partial pressure conditions.  相似文献   

17.
Epitaxial MgO was deposited onto Si(001) substrates by molecular beam epitaxy using elemental metallic sources and molecular oxygen at temperatures from 150 to 400C. To facilitate epitaxy through misfit strain relaxation, epitaxial MgO layers were grown on SrO and SrTiO3 buffer layers deposited on Si(001) substrates. The structure of the epitaxial layers was determined by X-ray diffraction, reflection high-energy electron diffraction and transmission electron microscopy. The observed orientation for the MgO/SrO/Si multilayer is cube-on-cube. The X-ray rocking curve full width half maximum of the MgO on SrO buffer layers was 2.2. SrTiO3 buffer layers grown by recrystallization were epitaxial and exhibited improved morphology relative to those grown at a fixed growth temperature. X-ray analysis of a 5.2 nm recrystallized SrTiO3 film indicates a fully relaxed and phase pure film. The observed orientation of MgO using SrTiO3 buffer layers is MgO[100]SrTiO3[100]Si[110].  相似文献   

18.
We have deposited SrTiO3 thin films on Nb-doped SrTiO3 substrates by pulsed laser deposition at temperatures of up to 1400°C. Reflection high energy electron diffraction was used to monitor the film growth mode at various temperatures and it was shown that growth proceeded in the step-flow mode at above 900°C. Capacitors were formed by evaporating platinum pads on the film surface and gold pads on the substrate. Films grown in the step-flow mode showed consistently higher dielectric constants below 200 K than films grown in the layer-by-layer mode. Films with the highest dielectric constant () were obtained using a stoichiometric ablation target at an oxygen pressure of 10SrTiO3 –6SrTiO3 Torr.  相似文献   

19.
Abstract

The leakage current and dielectric properties of (Ba0.5Sr0.5)TiO3(BST) thin films prepared by pulsed laser deposition (PLD) were investigated. It was found that leakage currents for positive bias voltage were higher than that for negative bias voltage, which was attributed to the lattice mismatch between bottom Pt electrode and BST thin film. The time-dependent breakdown process under positive voltage was observed, which was interpreted as the increase of the internal electric field in the film near the bottom electrode. However, the internal electric field can be decreased and eventually recovered by applying negative bias voltage. It was found that internal electric field near the interface can influence the capacitance of the BST thin film capacitor. An explanation for the thickness effect of BST thin films was given.  相似文献   

20.
Highly (100) preferred undoped and 1–5% Ni-doped Ba1–xSrxTiO3 (BST) thin films were deposited onto MgO (100) single crystal substrate at 750°C using pulsed laser deposition. BST thin film-based interdigital capacitors (IDC) were prepared by standard photolithography process. The microwave properties of BST films were measured at 10 GHz. Ni-doped BST films showed better dielectric properties by exhibiting improved dielectric Q while retaining an appropriate capacitance tuning compared to undoped BST films. 1% Ni-doped BST film showed the maximum figure of merit of 2896.1. It is suggested that 1 mol% Ni doped BST film is an effective candidate for high performance tunable device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号