首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了实现风力发电机风轮叶片外形的优化设计,以风场风速分布为基础提出了综合优化目标;以片条理论为基础提出了以展弦比为关键参数的修形约束条件的气动优化目标,建立了叶片外形优化设计的数学模型。采用枚举法和循环结构,选用Access数据库,应用Visual Basic编制程序实现叶片外形的优化设计。针对内蒙古某地区设计了1.5MW风力机叶片,与国外同功率某通用叶片进行了对比分析。结果表明,两种叶片外形基本吻合,而且文中设计的叶片在性能上有明显优势,同时也验证了文中提出数学模型的可靠性和程序的实用性。  相似文献   

2.
This paper presents a gradient based topology optimization method for Discrete Material and Thickness Optimization of laminated composite structures, labelled the DMTO method. The capabilities of the proposed method are demonstrated on mass minimization, subject to constraints on the structural criteria; buckling load factors, eigenfrequencies, and limited displacements. Furthermore, common design guidelines or rules, referred to as manufacturing constraints, are included explicitly in the optimization problem as series of linear inequalities. The material selection and thickness variation are optimized simultaneously through interpolation functions with penalization. Numerical results for several parameterizations of a finite element model of a generic main spar from a wind turbine blade are presented. The different parameterizations represent different levels of complexity with respect to manufacturability. The results will thus give insight into the relation between potential weight saving and design complexity. The results show that the DMTO method is capable of solving the problems robustly with only few intermediate valued design variables.  相似文献   

3.
应用无人机对风力发电机进行自主巡检时,需对其桨叶叶尖进行精准定位,同时因机载计算板的计算能力有限,常规目标检测算法检测效率低下。为此提出了一种基于轻量型YOLOv5的风机桨叶检测与空间定位方法,首先对YOLOv5目标检测算法进行轻量化改进,将ShuffleNetv2作为特征提取主干网络;然后利用该算法对风机全景图像中的风机轮毂和桨叶进行检测,以得到轮毂和桨叶叶尖的像素坐标;最后利用无人机位姿信息和空间平面的几何关系,对风机桨叶进行精准定位。实验表明,所改进的目标检测算法以1.536×106的参数量在大疆MANIFOLD2-C上的检测速度提升47%,可达29.4 f/s,所设计的定位方法可对风机桨叶叶尖进行精准定位,水平和高度定位误差均为±5 cm,三维整体定位误差为±10 cm。  相似文献   

4.
基于参数化的涡轮叶片三维气动优化仿真   总被引:1,自引:0,他引:1  
为了提高涡轮叶片的设计效率,在分析已有涡轮叶片截面线参数化造型技术优缺点的基础上,基于B样条曲线实现了涡轮叶片截面线的参数化造型和参数化修改,并编写了叶片造型程序,实现了叶片流场模型的自动化生成.以某型号涡轮叶片为例,对其进行三维流场数值模拟,然后采用遗传算法和序列二次规划法算法的组合,以涡轮的气动效率为目标函数,对涡轮叶片进行了气动优化.算例结果表明文中所建立的涡轮叶片自动优化设计体系是可行的.  相似文献   

5.
An iterative redesign algorithm is proposed to integrate the design of the structural parameters and a linear parameter-varying (LPV) controller for a three-bladed horizontal-axis wind turbine. The LPV controller is designed for an eighth-order lumped model of the wind turbine consisting of blades, drive-train and the tower. The lumped model response is matched with detailed open-loop numerical simulations using the Fatigue, Aerodynamics, Structures and Turbulence (FAST) code. The controller is scheduled in real-time based on the mean wind speed to account for the varying system dynamics. The objective is to track the operating trajectory meanwhile minimise the H performance index from the wind turbulence to the controlled output vector consisting of pitch angle, blade tip deflection, and the generator speed and torque. Sensitivity analysis of the closed-loop performance index with respect to the structural parameters of the system is examined. The integrated design problem is formulated as an iterative sequential controller/structure redesign to obtain the structural parameters and controller matrices corresponding to a local optimal performance index. Each step of the iterative procedure is formulated as a linear matrix inequality (LMI) optimisation problem that can be solved efficiently using available LMI solvers. The evolution of the structural parameters and performance index through the integrated design is illustrated. The FAST closed-loop simulations for two selected designs with the smallest values of the performance index demonstrate the improved performance of the overall system through the integrated structure/control redesign in both minimising the effect of the wind disturbance on the generator output power, and reducing the structural loads on the wind turbine.  相似文献   

6.
7.
This paper presents an application of CRONE control, a robust control based on fractional order differentiation, to an anti-icing/deicing system for wind turbine blades. The deicing system uses an electrically conductive polymer paint applied on the blade at ice formation areas. The voltage applied to the paint leads to its heating. Based on a temperature measure provided by various sensors placed on the blade, a control system can thus be used to prevent the blade icing up during wind turbine operation or to deice the blade after a rest time. To design the control system, a thermal model of the blade with the paint was developed and its associated parameters were identified using tests in a climatic wind tunnel. A CRONE controller was then designed and its performance evaluated both on blade subparts in the climatic wind tunnel and on a floor-standing real blade.  相似文献   

8.
Multi-disciplinary constrained optimization of wind turbines   总被引:1,自引:0,他引:1  
We describe procedures for the multi-disciplinary design optimization of wind turbines, where design parameters are optimized by maximizing a merit function, subjected to constraints that translate all relevant design requirements. Evaluation of merit function and constraints is performed by running simulations with a parametric high-fidelity aero-servo-elastic model; a detailed cross-sectional structural model is used for the minimum weight constrained sizing of the rotor blade. To reduce the computational cost, the multi-disciplinary optimization is performed by a multi-stage process that first alternates between an aerodynamic shape optimization step and a structural blade optimization one, and then combines the two to yield the final optimum solution. A complete design loop can be performed using the proposed algorithm using standard desktop computing hardware in one-two days. The design procedures are implemented in a computer program and demonstrated on the optimization of multi-MW horizontal axis wind turbines and on the design of an aero-elastically scaled wind tunnel model.  相似文献   

9.
Savsani  Vimal  Dave  Parth  Raja  Bansi D.  Patel  Vivek 《Engineering with Computers》2021,37(4):2911-2930

The present work focused on the optimization of offshore wind turbine structure which can sustain different environmental conditions and is of the least cost. Size and topology optimization is carried out for the jacket structure from the National Renewable Energy Laboratory (NREL) [used in the Offshore Code Comparison Collaboration Continuation (OC4) project] by using teaching learning-based optimization (TLBO) algorithm and genetic algorithm (GA). The optimization process is carried out in Matlab along with the time-dependent dynamic wind turbine simulation with the aerodynamic, hydrodynamic and structural forces in the fatigue, aerodynamics, structures, and turbulence code (FAST) from NREL. This is an innovative process which can be used to substitute the time-consuming construction of a wind turbine for its analysis. In this work, both static and dynamic analyses are carried out for simultaneous size and topology optimization. The forces applied to the structure are realistic in nature and fatigue analysis is carried out to ensure that the structure does not fail during its design life. This ensures that the simulation is more accurate and realistic as compared with other analysis. The results showed that the TLBO algorithm is effective compared to GA in terms of size and topology optimization. Further, the other state-of-the art algorithms from the Congress on Evolutionary Computation (CEC) such as differential evolution, LSHADE, multi-operator EA-II, effective butterfly optimizer, and unified differential evolution are also implemented and the comparative results of all the algorithms are presented.

  相似文献   

10.
为更好地综合运用计算机自动绘图技术和混流式水轮机叶片设计理论,通过Microsoft Excel的VBA编程工具进行二次开发控制AutoCAD自动绘制水轮机部分图形,完成叶片三维绘形和速度三角形绘形,实现水轮机叶片参数计算与绘图一体化.该方法可提高工作效率,大大减少重复性工作量,为水轮机叶片参数优化和设计优化提供参考.  相似文献   

11.
Design of heterogeneous turbine blade   总被引:2,自引:0,他引:2  
Constantly rising operating pressure and temperature in turbine drivers push the material capabilities of turbine blades to the limit. The recent development of heterogeneous objects by layered manufacturing offers new potentials for the turbine blades. In heterogeneous turbine blades, multiple materials can be synthesized to provide better properties than any single material. A critical task of such synthesis in turbine blade design is an effective design method that allows a designer to design geometry and material composition simultaneously.This paper presents a new approach for turbine blade design, which ties B-spline representation of a turbine blade to a physics (diffusion) process. In this approach, designers can control both geometry and material composition. Meanwhile, material properties are directly conceivable to the designers during the design process. The designer's role is enhanced from merely interpreting the optimization result to explicitly controlling both material composition and geometry according to the acquired experience (material property constraints).The mathematical formulation of the approach includes three steps: using B-spline to represent the turbine blade, using diffusion equation to generate material composition variation, using finite element method to solve the constrained diffusion equation. The implementation and examples are presented to validate the effectiveness of this approach for heterogeneous turbine blade design.  相似文献   

12.
风力发电机(简称风车),是一种将风能转化为机械能,电能或热能的转 换装置。比较了垂直轴风力发电机与水平轴风力发电机的优势后,对小型H 型垂直轴风车 叶片的进行了分析,给出了在不同工作环境中的载荷分析,并对叶片的应力计算及校核方法 作了讨论,为小型H 型垂直轴风车的叶片设计提供了参考。  相似文献   

13.

Considering the coupling among aerodynamic, heat transfer and strength, a reliability based multidisciplinary design optimization method for cooling turbine blade is introduced. Multidisciplinary analysis of cooling turbine blade is carried out by sequential conjugated heat transfer analysis and strength analysis with temperature and pressure interpolation. Uncertainty data including the blade wall, rib thickness, elasticity Modulus and rotation speed is collected. Data statistics display the probability models of uncertainty data follow three-parameter Weibull distribution. The thickness of blade wall, thickness and height of ribs are chosen as design variables. Kriging surrogate model is introduced to reduce time-consuming multidisciplinary reliability analysis in RBMDO loop. The reliability based multidisciplinary design optimization of a cooling turbine blade is carried out. Optimization results shows that the RBMDO method proposed in this work improves the performance of cooling turbine blade availably.

  相似文献   

14.
为提高汽轮机叶片叶根型线的设计效率和产品质量,基于接触应力约束下的枞树形叶片叶根型线设计,将传统的基于经验的设计与经典优化理论相结合,推导适合叶根型线的设计方法。采用移动渐近线法(method of moving asymptotes, MMA)进行结构拓扑优化,以某低压末级动叶片设计为例,优化前、后叶根和轮槽的VON Mises应力对比表明,所推导的方法能够快速得到所需的型线设计。该设计使得叶根与轮槽间的接触应力降低,叶片的使用寿命提高。  相似文献   

15.
Topology Optimization in Aircraft and Aerospace Structures Design   总被引:1,自引:0,他引:1  
Topology optimization has become an effective tool for least-weight and performance design, especially in aeronautics and aerospace engineering. The purpose of this paper is to survey recent advances of topology optimization techniques applied in aircraft and aerospace structures design. This paper firstly reviews several existing applications: (1) standard material layout design for airframe structures, (2) layout design of stiffener ribs for aircraft panels, (3) multi-component layout design for aerospace structural systems, (4) multi-fasteners design for assembled aircraft structures. Secondly, potential applications of topology optimization in dynamic responses design, shape preserving design, smart structures design, structural features design and additive manufacturing are introduced to provide a forward-looking perspective.  相似文献   

16.
Research on topology optimization mainly deals with the design of monoscale structures, which are usually made of homogeneous materials. Recent advances of multiscale structural modeling enables the consideration of microscale material heterogeneities and constituent nonlinearities when assessing the macroscale structural performance. However, due to the modeling complexity and the expensive computing requirement of multiscale modeling, there has been very limited research on topology optimization of multiscale nonlinear structures. This paper reviews firstly recent advances made by the authors on topology optimization of multiscale nonlinear structures, in particular techniques regarding to nonlinear topology optimization and computational homogenization (also known as FE2) are summarized. Then the conventional concurrent material and structure topology optimization design approaches are reviewed and compared with a recently proposed FE2-based design approach, which treats the microscale topology optimization process integrally as a generalized nonlinear constitutive behavior. In addition, discussions on the use of model reduction techniques is provided in regard to the prohibitive computational cost.  相似文献   

17.
以自制新翼型风力机风轮为研究对象,在B1/K2直流式低速风洞完成自制新翼型风力机的功率特性测试实验,采用丹麦B&K公司结构动态测试系统完成风轮结构动态特性实验,并与国内某公司同型号传统翼型的风力机进行气动特性、结构动态特性的对比分析,为下一步系统研究新翼型的气动特性和设计综合性能较优的风轮奠定了理论和实验基础.  相似文献   

18.
The reliability of blades is vital to the system reliability of a hydrokinetic turbine. A time-dependent reliability analysis methodology is developed for river-based composite hydrokinetic turbine blades. Coupled with the blade element momentum theory, finite element analysis is used to establish the responses (limit-state functions) for the failure indicator of the Tsai–Hill failure criterion and blade deflections. The stochastic polynomial chaos expansion method is adopted to approximate the limit-state functions. The uncertainties considered include those in river flow velocity and composite material properties. The probabilities of failure for the two failure modes are calculated by means of time-dependent reliability analysis with joint upcrossing rates. A design example for the Missouri river is studied, and the probabilities of failure are obtained for a given period of operation time.  相似文献   

19.
Cui  Mingtao  Luo  Chenchun  Li  Guang  Pan  Min 《Engineering with Computers》2021,37(2):855-872

In recent years, the parameterized level set method (PLSM) has attracted widespread attention for its good stability, high efficiency and the smooth result of topology optimization compared with the conventional level set method. In the PLSM, the radial basis functions (RBFs) are often used to perform interpolation fitting for the conventional level set equation, thereby transforming the iteratively updating partial differential equation (PDE) into ordinary differential equations (ODEs). Hence, the RBFs play a key role in improving efficiency, accuracy and stability of the numerical computation in the PLSM for structural topology optimization, which can describe the structural topology and its change in the optimization process. In particular, the compactly supported radial basis function (CS-RBF) has been widely used in the PLSM for structural topology optimization because it enjoys considerable advantages. In this work, based on the CS-RBF, we propose a PLSM for structural topology optimization by adding the shape sensitivity constraint factor to control the step length in the iterations while updating the design variables with the method of moving asymptote (MMA). With the shape sensitivity constraint factor, the updating step length is changeable and controllable in the iterative process of MMA algorithm so as to increase the optimization speed. Therefore, the efficiency and stability of structural topology optimization can be improved by this method. The feasibility and effectiveness of this method are demonstrated by several typical numerical examples involving topology optimization of single-material and multi-material structures.

  相似文献   

20.
《Computers & Structures》2007,85(11-14):1072-1079
The vortex method has been extended to account for blade flexibility, which is a potential source of unsteadiness in the flow past a wind turbine rotor. The code has been validated previously under the assumption of rigid blades. The aerodynamics method is based on the Goldstein model, which distributes the flow vorticity on rigid helicoidal surfaces defined uniquely by the flow parameters (tip speed ratio and average power extracted by the rotor) and the blade geometry (maximum radius and root lengths). The structure is treated as a beam with degrees of freedom in bending and torsion. The high twist of the wind turbine blades is responsible for induced velocities in the plane of the rotor as well as out of plane. A modal decomposition has been shown to be the most accurate and efficient approach for an implicit coupling of the structural and aerodynamics equations. Results for a homogeneous blade are presented for a low speed of 5 m/s and yaw angles of 0°, 5° and 10° and compared with rigid blade results and experiments of the National Renewable Energy Laboratory (NREL). The nonhomogeneous NREL blade has also been modeled and results are presented for V = 8 and 10 m/s at zero yaw that include the effect of the tower on the blade loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号